Quantum union bound

Anurag Anshu

March 23, 2021

In a recent work [OV21], O'Donnell and Venkateswaran obtained a remarkably simple proof of Gao's quantum union bound [Gao15]. In this note, we highlight some connection of their argument with Sen's quantum union bound [Sen11], which also has a remarkably simple proof but a quadratically weaker result than Gao's.
TL;DR: Fidelity wins over Euclidean distance.
Set-up: Given projectors $\Pi_{1}, \Pi_{2}, \ldots \Pi_{k}$ and a state $|v\rangle$, suppose $\| \Pi_{t}|v\rangle \|^{2}=1-\varepsilon_{t}$ (for all $t \in$ $\{1,2, \ldots k\})$. Here, $\|\cdot\|$ is the Euclidean norm. Define $\left|\tilde{w}_{0}\right\rangle:=|v\rangle,\left|\tilde{w}_{t}\right\rangle=\Pi_{t} \ldots \Pi_{2} \Pi_{1}|v\rangle$ and $\left|w_{t}\right\rangle=\frac{\left|\tilde{w}_{t}\right\rangle}{\|\left|\tilde{w}_{t}\right\rangle \|}$. We also define $\bar{\Pi}_{t}:=\mathrm{I}-\Pi_{t}$, which means $\varepsilon_{t}=\| \bar{\Pi}_{t}|v\rangle \|^{2}$. Quantum union bounds show that $\|\left|\tilde{w}_{t}\right\rangle \|^{2}$ is large and $\left|w_{t}\right\rangle$ is close to $|v\rangle$, if $\sum_{i} \varepsilon_{i}$ is small.

Closeness measures: It will be convenient to work with pure 'sub-normalized' states, which have norm less or equal to 1 . We abbreviate $v:=|v\rangle\langle v|, \tilde{w}_{t}:=\left|\tilde{w}_{t}\right\rangle\left\langle\tilde{w}_{t}\right|$ and $w_{t}:=\left|w_{t}\right\rangle\left\langle w_{t}\right|$. Given $|\rho\rangle,|\sigma\rangle$, we consider two notions of 'closeness': $\mathrm{F}(\rho, \sigma)=|\langle\rho|| \sigma\rangle\left.\right|^{2}$ and $\Delta(\rho, \sigma)=1-\||\rho\rangle-|\sigma\rangle \|^{2}$.
O'Donnell-Venkateswaran argument: Based on the following inequality [OV21, Lemma 2.1], for a projector Π and pure sub-normalized states $|\rho\rangle,|\sigma\rangle$.

$$
\begin{equation*}
\sqrt{\mathrm{F}(\rho, \sigma)} \leq \sqrt{\mathrm{F}(\rho, \Pi \sigma \Pi)}+\| \bar{\Pi}|\rho\rangle\| \| \bar{\Pi}|\sigma\rangle \| . \tag{1}
\end{equation*}
$$

Using it recursively starting with $\rho, \sigma=v$, we find

$$
\begin{aligned}
1-\sqrt{\mathrm{F}\left(v, \tilde{w}_{k}\right)} & \leq \sum_{t=1}^{k} \| \bar{\Pi}_{t}|\rho\rangle\| \| \bar{\Pi}_{t}\left|\tilde{w}_{t-1}\right\rangle \| \leq \sqrt{\left(\sum_{t=1}^{k} \| \bar{\Pi}_{t}|\rho\rangle \|^{2}\right)\left(\sum_{t=1}^{k} \| \bar{\Pi}_{t}\left|\tilde{w}_{t-1}\right\rangle \|^{2}\right)} \\
& =\sqrt{\left(\sum_{t=1}^{k} \varepsilon_{t}\right)\left(1-\|\left|\tilde{w}_{k}\right\rangle \|^{2}\right)} .
\end{aligned}
$$

Since $1-\sqrt{\mathrm{F}\left(v, \tilde{w}_{k}\right)} \geq 1-\|\left|\tilde{w}_{k}\right\rangle \|$, [OV21] find that

$$
\frac{1-\|\left|\tilde{w}_{k}\right\rangle \|}{1+\|\left|\tilde{w}_{k}\right\rangle \|} \leq \sum_{t=1}^{k} \varepsilon_{t} \Longrightarrow \|\left|\tilde{w}_{k}\right\rangle \| \geq \frac{1-\sum_{t=1}^{k} \varepsilon_{t}}{1+\sum_{t=1}^{k} \varepsilon_{t}}
$$

This is used to also lower bound $\mathrm{F}\left(v, w_{k}\right)$.

Sen argument: Based on the following inequality [Sen11, Lemma 2], for a projector Π and pure sub-normalized states $|\rho\rangle,|\sigma\rangle$.

$$
\begin{equation*}
\Delta(\rho, \sigma) \leq \Delta(\rho, \Pi \sigma \Pi)+\| \bar{\Pi}|\rho\rangle \|^{2} \tag{2}
\end{equation*}
$$

Using it recursively starting with $\rho, \sigma=v$, we find

$$
1-\Delta\left(v, \tilde{w}_{k}\right) \leq \sum_{t=1}^{k} \| \bar{\Pi}_{t}|\rho\rangle \|^{2}=\sum_{t=1}^{k} \varepsilon_{t} .
$$

Since

$$
\begin{aligned}
1-\Delta\left(v, \tilde{w}_{k}\right) & =\||v\rangle-\left|\tilde{w}_{k}\right\rangle\left\|^{2} \geq\right\||v\rangle\left\|^{2}+\right\|\left|\tilde{w}_{k}\right\rangle \|^{2}-2\left|\left\langle v \| \tilde{w}_{k}\right\rangle\right| \\
& =1+\|\left|\tilde{w}_{k}\right\rangle\left\|^{2}-2\right\|\left|\| \tilde{w}_{k}\right\rangle \| \sqrt{\mathrm{F}\left(v, w_{k}\right)} \\
& \geq\left(1-\|\left|\tilde{w}_{k}\right\rangle \|\right)^{2},
\end{aligned}
$$

[Sen11] finds that $\|\left|\tilde{w}_{k}\right\rangle \| \geq 1-\sqrt{\sum_{t=1}^{k} \varepsilon_{t}}$. This can also be used to lower bound $\mathrm{F}\left(v, w_{k}\right)$:

$$
\sqrt{\mathrm{F}\left(v, w_{k}\right)} \geq \frac{1+\|\left|\tilde{w}_{k}\right\rangle \|^{2}-\sum_{t=1}^{k} \varepsilon_{t}}{2 \|\left|\tilde{w}_{k}\right\rangle \|} \geq \frac{2-2 \sqrt{\sum_{t=1}^{k} \varepsilon_{t}}}{2}=1-\sqrt{\sum_{t=1}^{k} \varepsilon_{t}}
$$

References

[Gao15] Jingliang Gao. Quantum union bounds for sequential projective measurements. Phys. Rev. A, 92:052331, Nov 2015.
[OV21] Ryan O'Donnell and Ramgopal Venkateswaran. The quantum union bound made easy, 2021. arXiv:2103.07827.
[Sen11] Pranab Sen. Achieving the han-kobayashi inner bound for the quantum interference channel by sequential decoding, 2011. arXiv:1109.0802.

