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1 Introduction

In virtually any technical field, the classical problem of solving a linear system of equations has a wide range
of applications. Specifically, this problem can be formulated as finding x⃗, given an N × N matrix A and
an N -dimensional vector b⃗, such that Ax⃗ = b⃗. The best classical algorithms for solving linear systems of
equations scale with time polynomial in N — in fact, even just writing down the full solution x⃗ takes time
O (N). This may be very slow if N is incredibly big, which is often the case realistically, as the datasets we
use to construct linear systems are getting larger over time.

In the quantum analogue to the linear systems problem, we instead take as input the matrix A and the

quantum state |b⟩ =
∑N

i=1 bi|i⟩
∥
∑N

i=1 bi|i⟩∥2
, where bi are the entries of b⃗. The goal is to output a state close to

|x⟩ =
∑N

i=1 xi|i⟩
∥
∑N

i=1 xi|i⟩∥2
, where xi are the entries of x⃗ such that Ax⃗ = b⃗. One might wonder why we would care

about this problem, since the output does not even fully specify the solution x⃗ to the system of equations.
However, it is often the case that one is only interested in a function or summary statistic of the solution
x⃗, which may be efficiently computable from the quantum state |x⟩. For example, one is often interested in
the expectation value ⟨x|M |x⟩ for some quantum measurement operator M . This technique can be used to
extract many properties of x⃗, such as finding the total weight of certain parts of the state space.

In a groundbreaking paper by Harrow, Hassidim, and Lloyd (HHL), they invent an algorithm that solves
this Quantum Linear Systems Problem in poly(logN) time for matrices satisfying certain conditions, which
is an exponential speedup from any existing classical algorithms [3]. Thus, the quantum analogue to the
linear systems problem has enormous implications and potential for far-reaching practical use cases. Here,
we aim to extend the work done in the HHL paper by expanding on the details of and the motivation behind
their proof of the BQP-completeness of matrix inversion.

2 Preliminaries

2.1 Mathematical background

Before we define the Quantum Linear Systems Problem, we’ll first need to define a few properties of matrices.

Definition 2.1 (Sparsity). A matrix is s-sparse if each row has at most s nonzero elements.

Intuitively, it should be faster to do computations with matrices of low sparsity than with dense matrices.

Definition 2.2 (Condition number). Let A be an N ×N normal matrix, i.e., A such that A†A = AA†. Let
λmax and λmin be the largest and smallest eigenvalues (by moduli), respectively, of A. Then, the condition

number of A is defined to be κ(A) ≡ |λmax|
|λmin| .
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As the condition number of a matrix grows larger, the matrix becomes more and more “ill-conditioned.”
This is because it gets closer to a matrix with eigenvalue 0; i.e., a matrix that cannot be inverted. Thus, we
will demand that our matrices have bounded condition numbers.

2.2 The Quantum Linear Systems Problem

Definition 2.3 (Quantum Linear Systems Problem (QLSP)). An algorithm solves the quantum linear
systems problem if it has:

• Input: A O (1)-sparse N × N invertible matrix A specified through an oracle, an N -dimensional
quantum state |b⟩, and an error threshold ϵ.

We also require that A be well-conditioned ; i.e., the moduli of its eigenvalues lie between 1/κ(A) and 1.

• Output: A quantum state |x̃⟩ such that ∥ |x̃⟩−|x⟩ ∥2 ≤ ϵ, where |x⟩ is a normalized state proportional
to A−1 |b⟩.

We will show that the Quantum Linear Systems Problem is BQP-complete, where BQP (Bounded-Error
Quantum Polynomial Time) is the class of problems solvable in polynomial time by a quantum computer
with an error probability of at most 1/3.

3 BQP-completeness of QLSP

To show that QLSP is BQP-hard, we will show that any arbitrary BQP circuit can be simulated by an
instance of QLSP. Consider a quantum circuit on n = logN qubits with input state |ψ⟩ that applies unitaries
U1, . . . , UT , each of which are two-qubit gates. For notational convenience, define U0 = 1. Note that the input
state |ψ⟩ is merely a classical bit-string in {0, 1}n encoded as a quantum state. Our objective is to construct
an instance of QLSP such that solving it simulates measuring the first (output) qubit of UT . . . U1 |ψ⟩.

3.1 Motivating our QLSP construction

The goal here is to construct a matrix A from U1, . . . , UT such that if QLSP returns the quantum state
proportional to A−1 applied to the input state |ψ⟩, we can simulate the output state UT . . . U1 |ψ⟩.

One natural way to construct an A such that we can characterize A−1 easily would be to define A = 1 − cV
for some unitary V and constant 0 < c < 1, because this allows us to extend the geometric series
(1 − cx)−1 =

∑∞
t=0 c

txt to obtain

A−1 = (1− cV )−1 =

∞∑
t=0

ctV t. (1)

In order to simulate the output state UT . . . U1 |ψ⟩ using A−1, we should choose V such that when A−1 is
applied to |ψ⟩, we obtain a superposition of the intermediate states of our quantum circuit — we call (a
normalized version of) this superposition a history state since it captures the computation history of the
circuit. Then, one term in this superposition will correspond to the output state, so if we measure the history
state, we will, with some probability, obtain a measurement of the output state.

The immediate problem with this is that we will not know whether or not the measurement corresponds to a
measurement of the output state or of some other intermediate state of the circuit. How can we fix this? One
way is to use the idea of a “clock” register from the Feynman-Kitaev clock construction [4]. Introduce an
ancillary register C and construct V such that the following invariant (the “clock invariant”) is maintained:
if register C contains |t⟩, then the second register must contain the intermediate state after t time steps of
the circuit, i.e., Ut . . . U1 |ψ⟩. Then it suffices to measure the clock register and check whether or not the
measured time step corresponds to one in which the second register contains the output state. If so, it is a
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successful simulation and we are done; if not, we can simply repeat the whole process with the hope that the
next attempt will give us a measurement at an “output” time step. Our modified input state now becomes

|in⟩ = |0⟩C ⊗ |ψ⟩ .

Let us next look at how we might define V . Since our expression for A−1 as in Equation (1) is a sum of
ctV t, the corresponding expression for A−1 |in⟩ will be a superposition of V t |in⟩. Since we want this to be
a superposition of the intermediate states, a natural definition of V would be such that each application of
V on an intermediate state results in the next intermediate state, while maintaining the clock invariant (i.e.,
incrementing the clock register). In other words, we want V t |in⟩ = |t⟩C ⊗Ut . . . U1 |ψ⟩. But notice that our
expression is an infinite sum of ctV t. So what should happen after T applications of V ?

To answer this question, we will have to keep two things in mind: 1) in order for A−1 |in⟩ to be finite-
dimensional, the clock register state must live in a finite-dimensional vector space, so we cannot increment
it indefinitely, and 2) we want the probability that a measurement of the history state corresponds to a
measurement of the output state to be large, so we ideally want the output state to live for more than just
one time step. The first issue can be fixed by performing a “reset” of the clock register back to 0 after a
certain time step is reached. The second one can be fixed by maintaining the output state in the second
register beyond time step T for, say, T time steps. Finally, we need to maintain the clock invariant while
performing the reset, which means we need to return to state |ψ⟩ in the second register: a simple way to do

this would be to unapply UT , . . . , U1 by successively applying their conjugate transposes U†
T , . . . , U

†
1 .

3.2 Constructing an infinite circuit

To summarize our conclusions from Section 3.1, we want to construct, given a quantum circuit U1, . . . , UT ,
an infinite circuit that applies U1 up to UT , then applies T instances of 1, then applies U†

T down to U†
1 ,

before repeating this sequence of gates infinitely many times. This achieves our goal of constructing an
infinite circuit that remains in the output state UT . . . U1 |ψ⟩ for a large fraction of the time, and resets after
every 3T time steps.1 The clock register C must hence be of dimension 3T to keep track of which time step
each intermediate state corresponds to.

U1 UT 1 1 U†
T U†

1
U1 UT 1 1 U†

T U†
1

· · · · · · · · · · · · · · · · · · · · ·|ψ⟩

Figure 1: A visualization of our infinite circuit. The dashed box of 3T gates is repeated infinitely.

Based on our discussion of what we want V to achieve, the following definition of a “clock unitary” Vclock
(or simply V for shorthand) suffices:

Vclock =

T−1∑
t=0

|t+ 1⟩⟨t|C ⊗ Ut+1︸ ︷︷ ︸
Vprop

+

2T−1∑
t=T

|t+ 1⟩⟨t|C ⊗ 1︸ ︷︷ ︸
Vnoop

+

3T−1∑
t=2T

|t+ 1 mod 3T ⟩⟨t|C ⊗ U†
3T−t︸ ︷︷ ︸

Vdeprop

. (2)

We’ve constructed this unitary such that each application of Vclock to an intermediate state both increments
the clock register by 1 and applies the next gate to the second register, effectively allowing us to walk

1Technically, we could apply all of U1, . . . , UT in a single time step and then all of U†
T , . . . , U†

1 also in a single time step, but
we instead apply them one at a time in order to keep A sparse (see Lemma 3.2).
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through each time step of our circuit by repeatedly applying Vclock to |in⟩. This is because when applied to
an intermediate state corresponding to any time-step t, there is exactly one non-zero term in the resulting
state. Starting with |in⟩, the non-zero term in each of the first T applications of Vclock is within the
propagation unitary Vprop. After T applications, we are in state |T ⟩C ⊗ UT . . . U1 |ψ⟩, and the following T
applications continue to increment the clock while leaving the second register untouched (i.e., performing T
no-ops as defined by Vnoop). Finally, the next T (depropagation) applications undo the unitaries until we
end up with the original state |0⟩C ⊗ |ψ⟩, at which point the clock has wrapped back around to 0 and we
repeat the process. Let’s illustrate this pattern mathematically:

V 0 |in⟩ = |0⟩ |ψ⟩ V T |in⟩ = |T ⟩UT . . . U1 |ψ⟩ V 2T |in⟩ = |2T ⟩UT . . . U1 |ψ⟩
V 1 |in⟩ = |1⟩U1 |ψ⟩ V T+1 |in⟩ = |T + 1⟩UT . . . U1 |ψ⟩ V 2T+1 |in⟩ = |2T + 1⟩UT−1 . . . U1 |ψ⟩

V 2 |in⟩ = |2⟩U2U1 |ψ⟩ V T+2 |in⟩ = |T + 2⟩UT . . . U1 |ψ⟩
...

...
... V 3T−1 |in⟩ = |3T − 1⟩U1 |ψ⟩

V T−1 |in⟩ = |T − 1⟩UT−1 . . . U1 |ψ⟩ V 2T−1 |in⟩ = |2T − 1⟩UT . . . U1 |ψ⟩ V 3T |in⟩ = |0⟩ψ = |in⟩.

In general, we have

V t
clock |in⟩ = V t(|0⟩C ⊗ |ψ⟩) =


|t mod 3T ⟩C ⊗ Ut mod 3T . . . U0 |ψ⟩ if 0 ≤ t mod 3T < T

|t mod 3T ⟩C ⊗ UT . . . U0 |ψ⟩ if T ≤ t mod 3T < 2T

|t mod 3T ⟩C ⊗ U†
3T−t mod 3T . . . U0 |ψ⟩ if 2T ≤ t mod 3T < 3T

. (3)

We see from (3) that V t |in⟩ represents the quantum state of our infinite circuit after t time steps with the
appropriate value for our clock register, as desired. Therefore, our history state is simply

|history⟩ ∝
∞∑
t=0

ctV t |in⟩ ,

as required. As for the choice of constant for c, setting c = e−1/T ensures that we have bounds on the
condition number of A, as we shall see in Lemma 3.1. Thus, we’ve constructed matrices A = 1 − V e−1/T

and A−1 such that A−1 |in⟩ ∝ |history⟩.

3.3 Concluding that QLSP is BQP-complete

Before we can argue that our reduction is valid, we must check that the matrix A we constructed satisfies
the requirements specified by QLSP, as we shall do in the following lemmas.

Lemma 3.1. The condition number κ(A) of A = 1− V e−1/T is O (T ).

Proof. Let λmax and λmin be the largest and smallest eigenvalues, by moduli, of A. Then, using a similar
approach as Lemma 7 in [2], first note that

|λmax| ≤ max
∥x∥2=1

∣∣x†Ax
∣∣ = max

∥x∥2=1

∣∣∣x†
(
1− V e−1/T

)
x
∣∣∣ ≤ 1 + max

∥x∥2=1

∣∣x†V x
∣∣ · e−1/T = 1 + e−1/T . (4)

We obtain the first inequality above from the fact that x†Ax = λ for any unit eigenvector x of A with
corresponding eigenvalue λ. The second inequality follows from the triangle inequality. The last equality
is due to the fact that V is unitary, which means that V x is a unit vector, so |x†V x| ≤ 1 for all x, with
equality attained if x is a unit eigenvector.

Similarly,

|λmin| ≥ min
∥x∥2=1

∣∣∣x†
(
1− V e−1/T

)
x
∣∣∣ ≥ 1− max

∥x∥2=1

∣∣x†V x
∣∣ · e−1/T = 1− e−1/T , (5)
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Now, note that

e−1/T ≤ 1− 1

2T

because e−x ≤ 1− x
2 for all x ∈ (0, 1], since e−x is convex and intersects the line 1− x

2 at x = 0 and x ≈ 1.6.
Thus, dividing Equation (4) by (5) gives us

κ (A) =
|λmax|
|λmin|

≤ 1 + e−1/T

1− e−1/T
≤ 1 + 1

1−
(
1− 1

2T

) = 4T.

Since κ(A) ≤ 4T , we can conclude that κ(A) = O (T ).

Lemma 3.2. A = 1− V e−1/T is O (1)-sparse.

Proof. From the definition in Equation (2), we can represent V in matrix form by noticing that each |t+ 1⟩⟨t|
term is a 3T × 3T matrix consisting only of 0s with exactly one 1 in the (t+ 1)th row and tth column. V is
therefore a 3TN × 3TN matrix that looks like

V =



U†
1

U1

. . .

UT

1

. . .

1

U†
T

. . .

U†
2



,

where the blank entries above are zeroes. Since each submatrix Ut, 1, and U
†
t in V is O (1)-sparse (as the

Ut’s are 2-qubit gates), and the submatrices themselves lie within distinct rows, V must also be sparse. Since
A is defined to be 1 − V e−1/T , at most one additional non-zero term is introduced in each row, implying
that A is also O (1)-sparse.

Theorem 3.3. The Quantum Linear Systems Problem is BQP-hard.

Proof. To simulate our original circuit, we construct our matrix Vclock according to (2) from U1, . . . , UT .
Next, we construct a QLSP instance with inputs A = 1 − Vclocke

−1/T , |b⟩ = |0⟩C ⊗ |ψ⟩, and some small
constant ϵ. Note that A is a valid input since it is O (1)-sparse by Lemma 3.2. Moreover, the condition
number is small since it is bounded by O (T ) from Lemma 3.1, so we can rescale A to be well-conditioned.

The output of this QLSP instance will be an ϵ-approximation of the history state |history⟩ ∝ A−1 |b⟩. It is
easy to verify that AA−1 does in fact equal 1:

AA−1 = (1− V e1/T )

∞∑
t=0

V te−t/T =

∞∑
t=0

V te−t/T −
∞∑
t=0

V t+1e−(t+1)/T = V 0e−0/T = 1.

By our infinite circuit construction, if we measure the clock register of |history⟩ and obtain |t⟩ such that
T ≤ t < 2T , we know that the quantum state has collapsed to |t⟩⊗UT . . . U1 |ψ⟩. Thus, we have successfully
simulated the original circuit’s output. By (3), the terms in |history⟩ ∝

∑∞
t=0 e

−t/TV t with the desired clock
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register values have coefficients e−(3T ·k+t)/T for k ∈ Z≥0 and t ∈ {T, . . . , 2T − 1}. Hence, the probability of
success is∑∞

k=0

∑2T−1
t=T (e−(3T ·k+t)/T )2∑∞
t=0(e

−t/T )2
=

∑∞
k=0 e

−6k
∑2T−1

t=T e−2t/T

1/(1− e−2/T )
= e−2(1− e−2)

∞∑
k=0

e−6k =
e−2

1 + e−2 + e−4
>

1

10
,

where the simplifications above follow from the sum of finite and infinite geometric series.

If we instead measure the clock register and obtain |t⟩ such that t /∈ [T, 2T ), we can just repeat the QLSP
simulation until we are successful, since the probability of success is > 1/10 (we can do this since A is specified
via an oracle and |ψ⟩ is classical).2 Thus, our reduction is complete, so QLSP is in fact BQP-hard.

The number of identities chosen in our infinite circuit construction may have seemed somewhat arbitrary
initially, but we see from our proof above that the choice of performing T identities is ideal since it makes
the probability of success independent of T .

We have successfully shown that QLSP is BQP-hard above; moreover, the existence of the HHL algorithm
(see [3]) that actually solves the Quantum Linear Systems Problem in time O

(
log(N)κ2/ϵ

)
illustrates to

us that QLSP is in BQP as well for 1/ϵ ∈ poly(N). Therefore, QLSP is BQP-complete, and HHL gives
us an exponential speedup compared to the classical case when 1/ϵ and κ are poly(logN). Note that HHL
typically also assumes that A is Hermitian, but this condition can be relaxed to match our definition of

QLSP by using the Hermitian matrix

(
0 A
A† 0

)
and vector

(
b⃗
0

)
in HHL instead for non-Hermitian A.

4 Discussion

Informally, the BQP-completeness of QLSP means that it is in the set of hardest problems that can be
solved in polynomial time using a quantum algorithm. This fact can be used to make some claims about the
optimality of the HHL algorithm.

For instance, consider the complexity class BPP, which is the classical analogue of BQP: the set of problems
solvable by a classical probabilistic algorithm with error probability bounded by 1/3. Note that BPP ⊆ BQP
holds trivially since quantum algorithms can simulate classical probabilistic ones. Now if there were to exist
a classical algorithm that could solve QLSP in poly(κ, logN) time, then an implication would be that
BPP = BQP, because any quantum circuit could be reduced in polynomial time to an instance of QLSP,
which could then be solved in polynomial time using the classical algorithm whose existence we assumed.

But this is considered a highly unlikely result since classical probabilistic algorithms would then be able to
solve all problems that a quantum algorithm can in at most polynomially worse time. Among other things,
this would imply the existence of a classical polynomial time randomized factoring algorithm, the lack of
which the security of several modern cryptosystems depends on.

The authors of [3] (Appendix A, Theorem 5) also show that if the κ dependence in the runtime of a QLSP
algorithm can be brought down to sub-linear, i.e., if there exists a quantum algorithm that solves QLSP
in O

(
κ1−δpoly logN

)
for δ > 0, then BQP = PSPACE (the set of problems solvable in polynomial space

classically), which is also a very unlikely result.

Some future directions for our work include 1) optimizing the coefficients chosen in the history state in order
to maximize the success probability, while still ensuring that A remains well-conditioned, and 2) motivating
analogous clock constructions used in completeness proofs of other problems — such as the MA-completeness
proof of “stoquastic 6-SAT” as defined in [1] — with the goal of creating a general framework for proving
completeness for problems in certain complexity classes.

2Also note that we are working with an ϵ-approximation of A−1 |b⟩ (normalized) rather than the precise state, but we can
repeat the whole process to ensure that the error probability of the simulation is within a desired range. See Appendix A,
Section 5 of [3] for a more rigorous explanation.
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