
Analysis of the Trotter Method for Hamiltonian Simulation

Sabina Drăgoi∗

sabina dragoi@college.harvard.edu
(Dated: May 16, 2022)

This paper provides an overview of the Trotter method for Hamiltonian Simulation and is mostly
based on a recent paper by Childs et. al. [3]. We first explain what Hamiltonian Simulation is,
why it is useful, and how it is defined mathematically. We then introduce the Trotter method as
as approximation for the evolution operator etH (or e−itH for physicists). The approximation is
based on 2 key ideas: i) splitting the system into smaller subsystems that almost do not interact

with each other, i.e. H =
∑Γ

γ=1 Hγ , and ii) splitting the time evolution in small intervals caller
Trotter steps. We explain how our assumption about the lack of interaction, i.e. the splitting into
subsystems, translates to ignoring terms in the Baker-Campbell-Hausdorff (BCH) expansion. We
further introduce the idea of ‘order conditions’, which is what allows for tight bounds, by looking
at higher order Suzuki formulas. We then mention the general Trotter formula and 2 error bounds:
one that uses a 1-norm, and one that uses a commutator scaling. Proofs of these can be found in
the Appendices. We then compare these bounds with bounds achieved using Qubitization, for the
concrete cases of a k-local Hamiltonian and a rapidly decaying power-law Hamiltonian. Finally, we
propose how we could use the Trotter method for a more efficient implementation of the Quantum
Fourier Transform.

Usage: This paper constitutes my Final Project for the Computer Science Course 231, Quantum Computation
and Quantum Complexity, at Harvard University taught by Prof. Anurag Anshu and Teaching Fellows Chi-Ning
Chou and Prayaag Venkat in the Spring of 2022.

I. MOTIVATION

Hamiltonian Simulation is a promising application
of quantum computers. One can think of the Hamil-
tonian of a system as its only parameter such that if
we know it, we basically know everything about the
system. Knowing the exact Hamiltonian is most times
too strong a constraint as the Hamiltonian can have
a very complicated expression, which depends on the
position and momentum of each particle in the system,
as well as the interactions between them. Condensed
matter physicists have been dealing with the issue
of theoretically approximating this Hamiltonian for
different systems for a long time now. Simulations
of those systems on classical computers usually take
exponential running time (in system size), which limits
the number of particles one could consider to about
30, considerably less than 1023 that would be needed
for a mol for example. However, quantum computers
reintroduced the idea of simulating Hamiltonians as
entanglement and superposition of qubits can reduce the
running time to polynomials. This would further enable
research in areas such as quantum physics, chemistry, or
biology.

There are many methods for Hamiltonian simulation,
most notably Quantum Walks, Qubitization, Taylor
Series, Fractional Query, and the Trotter Method.
There has been a lot of research done on the first

∗ Harvard Physics Department, 945 Memorial Drive, Cambridge,
MA 02138, USA

methods mentioned, but the Trotter method only
recently gained more interest. This is because theoret-
ical results until recent years showed that it performs
worse than other methods. However, Childs et. al.
recently proved otherwise and also shown that empirical
results are even better than expected [3]. While the
question of why this is the case remains open for now,
I will present in this paper how the Trotter Method
works in principle, the theoretical results it gives for
certain problems, and how it compares to other methods.

II. HAMILTONIAN SIMULATION PROBLEM

Mathematically, we formulate the problem of Hamil-
tonian Simulation for quantum computers as follows:
Given a system described by a Hamiltonian H (a
2n × 2n complex Hermitian matrix), we want to output
a quantum circuit that approximates the unitary matrix
that performs the time evolution of a state |ψ⟩. This
unitary matrix is e−iHt from Schrodinger’s equation. We
define the cost of a quantum circuit to be the number
of gates used in the circuit, where the gates used come
from a fixed universal gate set. Occasionally, we might
also refer to the depth of the circuit to compare different
methods. Finally, another very important feature of
any simulation method is the error bound. If this is too
large, then the whole method could be irrelevant.

2

III. THE TROTTER METHOD

The Trotter Method is a protocol inspired by the
Lie-Trotter formula and whose goal is Hamiltonian
Simulation. The main advantage of the Trotter Method
is that it can be applied to a wide range of problems
because of its abstract mathematical foundation. In
comparison, Quantum Walks are strongly dependent on
the geometry of the system we want to study.

The idea behind the Lie-Trotter formula is elegant in
its simplicity: it is an approximation of the exponential of
a sum of operators resulting from truncating the Baker-
Campbell-Hausdorff (BCH) expansion 1. Its strength
comes from the fact that it can produce tighter error
bounds for both real and imaginary time evolutions, and
that it is somewhat independent of the local geometry
of the system we are trying to simulate. The Trotter
method is a physical application of a concept known as
product formulas which were originally developed for the
study of Lie groups in the late 1800s. While it has been
known for decades now that these formulas can be used
to simulate quantum system, Child’s paper was revolu-
tionary in that it analyzed the error bounds of these ap-
plications and provided improved results from what was
previously known [3].

A. Basic Idea

Assuming the Hamiltonian we are trying to simulate,
H, is time independent, after time t, a state |ψ⟩ would be
in the new state e−iHt |ψ⟩ (from Shrodinger’s equation).
We would thus desire to approximate e−iHt. The
Lie-Trotter formula F1 = e−iH′

1t . . . e−iH′
nt ≈ e−iHt, for

some Hi-s such that H =
∑n

i=1H
′
i gives a first order

approximation which works with good precision for
small t.

The reason why such a split would be desirable is
that H ′

i,∀i are much easier to implement on a quantum
computer compared to H due to an exponential size
decrease. To see why splitting H =

∑n
i=1H

′
i would be

yield in principle an exponential speed-up for any type
of Hamiltonian, consider a system of n qubits, where H
has 22n entries (if we write it as a matrix). If we split the
system into m subsystems, each with k = n/m qubits,
each resulting Hamiltonian Hi will have 22n/m entries,
which add up to a total of m22n/m entries, exponentially
less that 22n.

The intuition behind the Trotter method is perhaps
best understood by considering the k-local Hamilto-
nian H =

∑n
i=1Hi, where the Hamiltonian is already

physically designed to have the form required by the
first order formula. Hence, formula F1 for a k-local
Hamiltonian is a great approximation because all the
required information is preserved. However, note that

for other Hamiltonians, where there is no ‘clear split’
which weakens this first order approximation, and thus
require other formulas. Concretely, a ’clear split’ refers
to splitting the system into smaller subsystems, as
described earlier, where particles from each subsystem
do not interact with other subsystems. We quantify the
interaction strength between subsystems through the
commutator [Hi, Hj] of the Hamiltonians of each pair
of subsystems. Then, the lack of interaction between
subsystems translates to this commutator being 0.

The Trotter method is characterized by 2 splittings, a
physical one, of the system, as described above, and a
temporal one, of the time t that we let the system evolve
for. The splitting of the time t exists because as we
let the system evolve for longer, each individual factor
that will appear in the product eiHjt will get harder to
approximate. The process of splitting of the time t into
smaller chunks of time t/r is called ’trotterization’, and
it is done such that the error of each chunk is ϵ/r. Note
that the difference between the Hamiltonian splitting
and the time splitting is that the Hamiltonian splitting
is dependent on the geometry of the system.

The Lie-Trotter formula provides a first-order approxi-
mation, such that F1 = e−iHT +O(t2). However, this ap-
proximation assumes that high-order terms that appear
in the BCH expansion are dominated by the lowest-order
term, which is not true in many physical systems, such
as nearest-neighbor lattice Hamiltonians (i.e. ferromag-
nets), or chemical Hamiltonians. To better understand
this statement, we give an example of how this would
work for a Hamiltonian that can be written asH = A+B:

e−itBe−itA = e−it(A+B)− t2

2 [B,A]+i t3

12 [B,[B,A]]−i t3

12 [A,[B,A]]+...

(1)
In order to address this problem, one has to find the

right product formula and exploit the commutativity of
Hamiltonian summands. We will see in the next chapter
how to do this and what are the new bounds that we get.

B. Product formulas

In this section, we assume that there is some good
physical splitting such that we can write a given time-
independent Hamiltonian H =

∑n
i=1Hi, where each pair

of Hamiltonians has a small commutator. Recall the first-
order Lie-Trotter formula is meant to approximate etH

(or equivalently e−itH for physicists):

F1(t) = etHn . . . etH1

Higher order formulas are called the Suzuki formulas,
and the idea behind them is to further split the Hamil-
tonians H1, . . . ,Hn each into equal different parts, and
multiply these resulting parts in a cyclic order. Consider
for example the second order formula, where we split each

3

Hamiltonian into 2 parts and which we write as:

F2(t) = etH1/2 . . . etHn/2etHn/2 . . . etH1/2 (2)

To derive higher order terms in an intuitive manner,
we consider the simplest case H = A + B. The second
order Suzuki formula would then be as follows, according
to the definition given above:

F2(t) = etA/2etBetA/2 ≈ et(A+B)

We now go back to the initial expression that we want
to approximate and write it as follows, where we will
determine s later:

ex(A+B) = esx(A+B)e(1−2s)x(A+B)esx(A+B) (3)

We can then substitute each term in the above expres-
sion with the approximation given by the second order
Suzuki formula. This would then give us the next order
formula, where we want to choose s appropriately.

F3(t) = F2(st)F2((1− 2s)t)F2(st)

We are now left to determine the factor s, which we
do by imposing what is called an ‘order condition’. To
intuitively explain what this is, notice first that the first
order formula has an error O(t2). By plugging this into
the second order formula, the next order correction be-
comes O(t3), but corrections of order O(t2) might still
exist. However, if we choose s appropriately, the O(t2)
term will vanish. We then generalize this idea to find a
different sk at every step. Note that at step k, the error
will then be O(tk+1) by construction, i.e. we choose sk
such that this is true. Concretely, this is done as follows:

Fk(t) = Fk−1(skt)Fk−1((1− 2sk)t)Fk−1(skt)

=
[
eskt(A+B) +O

(
(skt)

k
)
+O(tk+1)

]
[
e(1−2skt)(A+B) +O

(
((1− 2sk)t)

k
)
+O(tk+1)

]
[
eskt(A+B) +O

(
(skt)

k
)
+O(tk+1)

]
= et(A+B) +O(tk+1)

because we choose 0 = O
[(

2skk + (1− 2sk)
k
)
tk
]

=⇒ sk =
1

2− 21/k

We now discuss the choice of formula 3, which might
have seemed random. What we did was basically write
down 1 = sk + (1 − 2sk) + sk, but we could have also
written 1 = sk+sk+(1−4sk)+sk+sk. If this would have
been the case, then we would have written the recursion
relation for the newly defined formulas as follows:

F∗
2k(t) = [F∗

2k−2(skt)]
2[F∗

2k−2((1− 4sk)t)][F∗
2k−2(skt)]

2

where 0 = 4s2k−1
k + (1− 4sk)

2k−1

=⇒ sk =
1

4− 41/(2k−1)

The question that remains is which formula works
better. Since both formulas given above have the same
error order, then in order to compare them we would
need to know the constant terms too. We could also
construct other formulas in a similar manner. These
formulas depend strongly on the system, so there is no
clear answer to our question. However, we can define a
general formula based on the discussion above.

Definition 1. A general Trotter formula has the fol-
lowing form, where the coefficients a(υ,γ) are real num-
bers, the parameter Υ denotes the number of stages of
the formula, and the permutation πυ controls the order-
ing of operator summands between neighboring stages.

F(t) =
Υ∏

υ=1

Γ∏
γ=1

eta(υ,γ)Hπυ(γ) (4)

While this is a very beautiful general and compact for-
mula, it also requires some unpacking. Firstly, Γ is the
number of subsystems we split the initial one into, such
that we have H1, . . . ,HΓ. Then, the number of stages Υ
refers to the number of exponential terms we will mul-
tiply to get our approximation. For example, we have
2n− 1 terms in F2 from earlier. As another example, we
also prove by induction that Υk = (2n− 2) · 5k−1 +1 for
the Suzuki formula F∗

2k(t). Notice that we define F∗
2k(t)

through a recurrence relation which is the product of 5
terms of the form F∗

2k−2, each with Υk−1 exponential
terms, so 5Υk−1 terms in total. However, because of the
symmetric order in which the exponentials are organized
in these formulas, 8 of these terms will merge into 4. This
is because every time two operators are multiplied, if the
beginning of the rightmost bears the same Hamiltonian
as the ending of the first, then you must count one less
exponential, as they collapse into one. Hence, we get:

Υk = 5Υk−1 − 4 = 5k−1(Υ1 − 1) + 1

Finally, we note that aυ,γ is what we denoted by sk in
the Suzuki formulas. To better understand the Trotter
formula, we give a final overview of the terms. At each
stage υ, we have either an increasing or decreasing prod-
uct of Hamiltonians H1, . . . ,HΓ. This order alternates
with stages, which is why we have the index πυ for the
Hamiltonians. In the Suzuki formulas, there were only 2
stages, which is why they looked simpler. Similarly with
the Suzuki formulas, at each stage, each Hamiltonian
had its factor aυ,γ that was chosen such that high order
errors would cancel out. This is analogous to sk in the
Suzuki formulas.

IV. ERROR BOUNDS

Now that we defined the Trotter formula, we would
next like to evaluate its error bound. Notice first that by

4

construction, i.e. due to the order conditions we impose,
that F(t) is a pth-order formula. This is defined below.

Definition 2. We call a formula F(t) to be pth-order
if for small t it satisfies:

F(t) = etH +O(tp+1) (5)

While this purely mathematical asymptotic behavior
is correct, a physical error bound would also depend on
the Hamiltonians H1, . . . ,HΓ. Childs et. al. give in
their paper [3] the tightest such bounds known at the
moment. There are 2 bounds they give, which are very
similar because they both rely on Taylor series expansion
and order conditions. However, the latter bound is more
commonly used because it also makes use of commuting
properties of the Hamiltonians.

Lemma 1: Trotter error with 1-norm scaling.

Given a pth-order formula F , where H =
∑Γ

γ=1Hγ , we
have the following result for the 1-norm:

∥F(t)− etH∥ = O

((Γ∑
γ=1

∥Hγ∥t
)p+1

etΥ
∑Γ

γ=1 ∥Hγ∥

)
(6)

Corollary 1. The number of Trotter steps required to
simulateH for large t up to error ϵ, i.e. ∥Fr(t/r)−etH∥ =
O(ϵ) is given by:

r = O

((∑Γ
γ=1 ∥Hγ(t)∥

)1+1/p

ϵ1/p

)
(7)

Lemma 2: Trotter error with commutator
scaling. Given Hamiltonian H =

∑Γ
γ=1Hγ , and p-

th-order product formula F(t), we define α̃comm =∑Γ
γ1,...,γp+1=1 ∥[Hγp+1

, . . . [Hγ2
, Hγ1

]]∥. Then, we have

the following results:

∥F(t)− etH∥ = O

(
α̃commt

p+1e2tΥ
∑Γ

γ=1∥Hγ∥

)
(8)

Corollary 2. The number of Trotter steps required to
simulateH for large t up to error ϵ, i.e. ∥Fr(t/r)−etH∥ =
O(ϵ) is given by:

r = O

(
α̃
1/p
commt1+1/p

ϵ1/p

)
(9)

The proofs are quite mathematical and long, so we
will instead focus on their implications in the next
section. However, for those interested in learning some
general techniques for bounding norms, these proofs can
be found in Appendix B and Appendix C.

V. APPLICATIONS FOR THE TROTTER
METHOD

A. k-local Hamiltonian

A k-local Hamiltonian is by definition expressed as
H =

∑
j1,...,jk

Hj1,...,jk , where each summand acts non-
trivially only on the qubits j1, . . . , jk. In order to get
the complexity of its product formula implementation,
we first want to compute the nested commutator:

α̃comm =

Γ∑
γ1,...,γp+1=1

∥∥∥[Hγp+1
, . . . [Hγ2

, Hγ1
]]
∥∥∥

We get the following result by induction:

α̃comm = O(|||H||||p1∥H∥1)

where ∥H∥1 =
∑

j1,...,jl−1,jl,...,jk

∥Hj1,...,jk∥

and |||H|||1 = max
l

max
jl

∑
j1,...,jl−1,jl+1,...,jk

∥Hj1,...,jk∥

We further get:

Trotter number r = O
(
|||H||||1∥H∥1/p1 t1+1/pϵ1/p

)
Gate complexity for Θ(nk) gates: nk|||H||||1∥H∥o(1)1 t1+o(1)

Many quantum algorithms could be improved if the
implementations of k-local gates would be more efficient
for larger values of k. Consider for example the Quantum
Fourier Transform (QFT), who has to rely on many
2-local Hamiltonians, when higher values of k could
definitely improve its performance if implemented effi-
ciently. In section VI we propose a new implementation
of QFT based on k-local Hamiltonians, which should be
k times faster than the standard implementation.

While there are very precise methods of implementing
2-local Hamiltonians for a system of neutral atoms [6],
approximations for k-local Hamiltonians might be more
relevant for near-term quantum computers. We give as
an example systems with only nearest-neighbor (NN) in-
teractions such as ferromagnets. These interactions are
usually described by a Hamiltonian of the following form,
where α is an integer:

∥Hi⃗,⃗j∥ ≤

{
1, if i⃗ = j⃗

1
∥⃗i−j⃗∥α

2

, else
(10)

For this form, we get the following explicit 1-norms:

|||H|||1 =

O(n1−α/d)

O(log n)
O(1)

∥H∥1 =

O(n2−α/d), if 0 ≤ α < d

O(log n), if α = d

O(1), if α > d

5

FIG. 1. Comparison of Trotter steps r required for O(ϵ) error
as a function of system size n for different bounds. In prin-
ciple, the more general the bound formula, the more steps it
requires. It remains an open question why the empirical re-
sults are better than the predictions.

And the gate complexity:

gα =

{
n3−α/d+o(1)t1+o(1), if 0 ≤ α < d

n2+o(1)t1+o(1), if d ≤ α
(11)

This is an improved bound compared to the one we
can get using qubitization [7], which has gate complexity
O(nk∥H∥1t). More interestingly, the empirical results
(depicted with purple in graph 1) are even better than
the theoretical predictions (depicted with yellow for
the commutator scaling bound, and with blue for the
1-norm bound). The reason why this happens is still an
open question. It is important to note that, in the plot,
the empirical results were derived for a small system for
which it is not known if boundary conditions played an
important role. The red dots represent a previous, very
general, analytical bound found by Childs et. al [1], and
the green dots represent the formula we get if we use
the specialized formulas for the power-law Hamiltonian.
Notice that as the formulas get more specialized to the
particular system we study, the bounds become better.
This is expected because we use information about the
Hamitonians to ignore the components that have little
impact, and thus reduce the number of required steps.
We discuss this in more detail in the next subsection.

As a further confirmation and motivation of the Trot-
ter method for k-local Hamiltonians, it was recently
shown that it can be used for the implementation of a
FANOUT gate [4] (for large k), which in turn can be
used for logarithmic depth circuits for many problems,
such as oracles, QFT, counting, and others [5].

B. Rapidly decaying power-law and quasilocal
interactions

Although the result from above is pretty good for a
general k-local Hamiltonian, we could further improve
the complexity by specializing on a particular type
of Hamiltonians. We study here the rapidly decaying
power-law Hamiltonian, although one should note there
are many other types of relevant Hamiltonians as well.
We mathematically define the rapidly decaying Hamil-
tonian by imposing α > 2d in 10, i.e. interactions decay
exponentially and we can thus ignore more coefficients
than usual in order to get a faster implementation. An
example of when this would be helpful is a 2D lattice of
Rydberg neutral atoms whose Van der Waals interac-
tions scale with 1/x6. This is one of the standardized
architectures for a quantum computer [6].

The idea of this new approximation is to truncate the
Hamiltonian H̃ =

∑
∥⃗i−j⃗∥2≤lHi⃗,⃗j , which we can later

optimize for l, and which is equivalent to the Rydberg
radius. The resulting H̃ is a 2-local Hamiltonian with 1-
norm ∥H̃∥1 = O(n) and induced 1-norm |||H̃|||1 = O(1).
By using Corollary 2, we get that the Trotter number is

r = O
(
n1/pt1+1/pϵ1/p

)
. Implementing each Trotter step

with O(nld) gates, we have gate complexity ld(nt)1+o(1).
Further optimizing for l, we get:

∥e−iHt − e−iH̃t∥ = O(∥H − H̃∥t) = O(nt/lα−d) ≤ O(ϵ)

=⇒ l = Θ
(
(nt/ϵ)1/(α−d)

)
with nt ≥ ϵ, t ≤ ϵα/d−2 such that n1/d ≥ l ≥ 1

Gate complexity: (nt)1+d/(α−d)+o(1)

This gate complexity is depicted with green in the graph
1. As expected, it gives better bounds than all the other
formulas (easy check 11) because we eliminate a lot of
the overhead by only considering interactions within a
certain limit. We can further improve this formula if we
have an exponentially decaying Hamiltonian, ∥Hi⃗,⃗j∥ ≤
e−β∥⃗i−j⃗∥2 . We choose cutoff l = Θ(log(nt/ϵ)) and get
gate complexity (nt)1+o(1).

VI. PROPOSED IMPLEMENTATION OF QFT
WITH MULTI-QUBIT GATES

We now go back to the idea of using the Trotter
method for simulating k-local Hamiltonians for a more
efficient implementation of the QFT. The idea is to use
a more analog implementation of QFT which relies on
k-local Hamiltonians for k > 2, and then apply the
Trotter method as discussed.

The main advantage of doing this compared to the
standard implementation, for which k = 2, is that it

6

requires less gates since k > 2. Furthermore, there
is great need for less gates since the known digital
implementation has too big an overhead for near term
quantum computers. We now do a short analysis
of this overhead to further motivate our study. The
classical implementation of the QFT gate on n qubits
consists of n Hadamard gates and n(n − 1)/2 ∼= O(n2)
controlled phase gates on 2 qubits each. To get a
better sense of why even this quadratic (i.e. small
polynomial) runtime is not good enough to be imple-
mented on near-time quantum computers, consider
using this gate in Shor’s algorithm to break RSA, for
which we would need about n = 1000 − 2000 qubits.
Even with a fidelity of 99% for each 2-qubit phase
gate, it would only take about 70 gates for an error to
occur. Furthermore, such a fidelity is hard to achieve
for controlled phase gates with phases that scale like 2−k.

We now go back to explaining the idea of using a more
‘analog’ implementation of the QFT. To address the
problem of decreased gate fidelity due to small phases,
we propose using a different kind of ‘controlled-phase’
gate that would act on all qubits within a Rydberg
radius that would apply the following controlled phases
{0, 1/21, 1/22, . . . , 1/2k} (in units of 2iπ) on the target
qubit, where k is the number of qubits within this radius.
The reason for choosing these phases is so that they
are perfectly analogous to the standard implementation,
but grouping them together into one gate instead of
k controlled phase gates is what gives an advantage.
Furthermore, the set of qubits within a Rydberg radius
directly corresponds to a k-local Hamiltonian, which
is why applying the Trotter method afterwards could
prove helpful. Finally, we ‘connect’ all the subsystems
by teleporting the state of the last qubit of a previous
subsystem on the ancilla of the current subsystem. This
can be seen in the gate representation of the protocol in
figure 3, and it is represented as a line connecting the
two qubits in figure 2.

For example, in figure 2, we have 2 6-local Hamil-
tonians. A special phase gate is applied within each
smaller subsystem, corresponding to an ancilla qubit
and other qubits placed around it within its Rydberg
radius. The phases applied between the ancillas |a1⟩,
|a2⟩ and their respective connected qubits are inversely
proportional to the distances between them. Concretely,
the phases of qubits {|1⟩ , |2⟩ , |3⟩ , |4⟩ , |5⟩ , |6⟩}, relative
to the ancilla are {0, 1/21, 1/22, 1/23, 1/24, 1/25} (in
units of 2iπ). Similarly for the other subsystem with
ancilla |a2⟩. Finally, we connect the two subsystems by
using the same state (phase) for the qubits |6⟩ and |a2⟩.

While we believe that theoretically this protocol could
show an advantage in comparison to the standard one, we
also acknowledge that there is no current infrastructure
that looks promising for an efficient implementation of
such a ‘special’ phase gate.

FIG. 2. Physical representation of system of qubits used for
a more ‘analog’ implementation of QFT. A special phase
gate is applied within each smaller subsystem, corresponding
to an ancilla qubit and other qubits placed around it within
its Rydberg radius. The phases applied between the ancillas
|a1⟩, |a2⟩ and their respective connected qubits are inversely
proportional to the distances between them. The phases of
qubits |6⟩ and |a2⟩ are made to be the same.

|2⟩|a1⟩

|3⟩
|4⟩

|5⟩

|6⟩

|1⟩

|2′⟩|a2⟩

|3′⟩
|4′⟩

|5′⟩

|6′⟩

|1′⟩

Assuming the existence of such a gate, call it P , we
now explain how our proposed protocol would work.
The idea is to only apply Hadamard gates and P gates,
so that we avoid controlled phase gates with phases so
small that their accuracy is effectively zero. We do this
by following the original circuit, with the difference that
we now group qubits in groups of k qubits to which we
apply the P gate. By using a common qubit for each two
consecutive P gates, we ensure that the total phase that
has to be applied to the target qubit gets propagated
until the end of each ‘sequence’. A ‘sequence’ refers to
the subcircuits between Hadamard gates. Our circuit
would therefore look like the one in figure 3.

We now give an estimate for the minimum efficiency of
the assumed controlled phase gate P required for this
protocol to provide a speed-up compared to the clas-
sical implementation of QFT. We denote the efficiency
(fidelity) of gate P with fk as we expect this to be a
function of the number of qubits involved, k. Abiding
by this notation convention, we denoted with f2 the ef-
ficiency of the 2-qubit controlled phase gates. Although
f2 should also vary with the phase we want to apply, we
assume it to be constant as a simplification. Finally, we
denote by fa the efficiency with which we can move qubits

7

|0⟩1

P
|0⟩2
|0⟩3
|0⟩4

P

. . .

|0⟩5
|0⟩6
|0⟩7

. . .
|0⟩8

P
|0⟩9
|0⟩10 H

|0⟩11 H

FIG. 3. Implementation of QFT using just Hadamard and
special controlled phase gates P , with k = 4.

within our system. It is a good approximation to con-
sider fa independent of the initial and final positions of
the atom in a Rydberg atom array setting [6]. The stan-
dard implementation uses n2/2 2-qubit CPHASE gates
and requires moving qubits around n2 times. Our imple-
mentation uses n2/(k − 1) k-qubit CPHASE gates and
requires moving qubits around n2/(k − 1) times. Hence,
the bound we get is:

fk ≥ (f2fa)
k−1/fa (12)

This is quite a realistic bound to have as f2 itself is
not too large, especially as the phases we want to apply
get smaller, and the power k − 1 further decreases the
minimum efficiency we seek.

VII. CONCLUDING REMARKS

The main take-away from this paper should be that
the Trotter Method, used for Hamiltonian Simulation, is
based on the idea that simulations for smaller systems
and for smaller amounts of time is more efficient than
the simulation of an entire system and for a long time
evolution. To do the physical split into subsystems, one
has to consider the particularities of the entire system
to ensure subsystems have little interaction with each
other. To do the time split efficiently, we employ the
method of product formulas, which is independent of
the system’s geometry, and which gives the best known
bound. Splitting the Hamiltonian, or equivalently the
system into subsystems is not always possible and
it depends on the system’s features. However, this
works great for k-local Hamiltonians or for systems
with short-range interactions. Thankfully, these are
also the kind of systems we most commonly see in nature.

The Trotter Method, although based on formulas from
a century ago, is a topic that has been gaining a lot of

attention in recent years due to its possible application
of Hamiltonian Simulation. Until Child’s paper [3], it
was thought that it performs worse than other methods,
which is why not many papers have sought to study it
into more detail until recently. However, interest is ex-
pected to increase in the near future, especially as em-
pirical results seem to perform even better than the the-
oretical predictions.

8

Appendix A: Error types

The goal of this section is to give a formal definition
of operator error, which will stand as a basis for the
derivation of the bounds given in Lemma 1 and Lemma 2.

In principle, there are three ways in which one can
evaluate the error of any formula: additive, multiplica-
tive, and exponentiated. We see below how these are
defined for the Trotter formula we introduced in 4.

F(t) = etH + A (t) additive

F(t) = etH(I + M (t)) multiplicative

F(t) = expτ

(∫ t

0

dτ(H + E (τ)
)
exponentiated

,where expτ is the time-ordered matrix exponential.
The term time-ordered simply refers to the fact that we
integrate τ between 0 and t, which is to say that events
from the future (t′ > t) do not affect events fro the past
(t′ < t). While this makes physical sense, there also exist
mathematical abstractions in which this assumption
does not hold.

Definition 3. For an operator-valued function H (τ),
defined for 0 ≤ τ ≤ t, we call U (τ) its time-ordered
evolution if U (0) = I and d

dtU (τ) = H (τ)U (τ).
If H (τ) is anti-Hermitian, then U (τ) is generated
by iH (τ). Formally, we have the representation

U (t) = expτ

(∫ t

0
dτH (τ)

)
. Notice that if we assume H

to be time-independent (as people usually do because it
is mathematically simpler and a good approximation for
small time intervals), then the main term becomes what
we expect it to, namely eHt. The fact that this formula
applies to time-varying Hamiltonians as well was one of
the important innovations introduced by Childs et. al.
in their recent paper [3].

In order to better understand how these are defined,
let us consider the concrete and simple example of the
Lie-Trotter formula for a Hamiltonian H = A + B, de-
fined by F1(t) = etBetA = etH + O(t2). While we
can directly infer the order of the additive error from
this expression, we would further like to compute it

exactly and then do the same for the multiplicative
and exponentiated errors. First notice that the relation
d
dtF1(t) = HF1(t) + [etB , A]etA = (B + etBAe−tB)F1(t)
and F1(0) = I. These will help us derive the exact addi-
tive and exponentiated errors. To get the multiplicative
error, we need to go back to the interaction picture, where
we have:

F1(t) = etH +

∫ t

0

dτe(t−τ)H [etB , A]etA

F1(t) = expτ

(∫ t

0

dτ(B + etBAe−tB)

)

F1(t) = etH expτ

(∫ t

0

dτ(e−τHeτBAe−τBe−τH − e−τHeτH)

)

We then get from the definitions:

A1(t) =

∫ t

0

dτe(t−τ)H [etB , A]etA = O(t2)

E1(t) = B + etBAe−tB −A = O(t)

M1(t) = expτ

(∫ t

0

dτ(e−τHeτBAe−τBe−tauH − e−τHeτH

)
− I

= O(t2)

There are of course general formulas for these errors.
While we will mention them here for the purpose of ap-
plying them in the next sections, the proofs can be found
in the original paper (Theorem 9, [3]).

Ap(t) = Mp(t) = O(tp+1); Ep(t) = O(tp)

Appendix B: Derivation of Trotter error with
1-norm

We now proceed give a sketch derivation of the formu-
las in Lemma 1 and Lemma 2, for completeness of the
paper. We note that their derivations strongly rely on the
order conditions that basically define of Trotter formu-
las. We start from the Taylor series expansion for F(t),
noting that the first p derivative vanish by construction
(i.e. order conditions).

9

F(t)− etH = (p+ 1)

∫ 1

0

dτ(1− τ/t)p tp+1

(p+ 1)!

(
F (p+1)(τ)−Hp+1eτH

)
(B1)

F (p+1)(τ) =
∑

q(1,1)+...+q(Υ,Γ)=p+1

(
p+ 1

q(1, 1) . . . q(Υ,Γ)

) Υ∏
υ=1

Γ∏
γ=1

(
a(υ,γ)Hπυ(γ)

)q(υ,γ)

eτa(υ,γ)Hπυ(γ) (B2)

∥F (p+1)(τ)∥ ≤
∑

q(1,1)+...+q(Υ,Γ)=p+1

(
p+ 1

q(1, 1) . . . q(Υ,Γ)

) Υ∏
υ=1

Γ∏
γ=1

∥∥∥Hπυ(γ)

∥∥∥q(υ,γ)

eτ∥Hπυ(γ)∥ (B3)

≤

(
Υ

Γ∑
γ=1

∥Hγ∥

)p+1

etΥ
∑Γ

γ=1 ∥Hγ∥ (B4)

∥Hp+1eτH∥ ≤

(
Γ∑

γ=1

∥Hγ∥

)p+1

etΥ
∑Γ

γ=1 ∥Hγ∥ (B5)

=⇒ ∥F(t)− etH∥ = O

((Γ∑
γ=1

∥Hγ∥t
)p+1

etΥ
∑Γ

γ=1 ∥Hγ∥

)
(B6)

Appendix C: Derivation of Trotter error with
commutator scaling

F(t)− etH =

∫ t

0

dτe(t−τ)HF(τ)T (τ) (C1)

T (τ) =
∑
(υ,γ)

−→∏
(υ′,γ′)≺(υ,γ)e

−τa(υ′,γ′)Hπ
υ′ (γ′)

(
a(υ,γ)Hπυ(γ)

)←−∏
(υ′,γ′)≺(υ,γ)e

τa(υ′,γ′)Hπ
υ′ (γ′) (C2)

−
−→∏

(υ′,γ′)≺(υ,γ)e
−τa(υ′,γ′)Hπ

υ′ (γ′)
(
H
)←−∏

(υ′,γ′)≺(υ,γ)e
τa(υ′,γ′)Hπ

υ′ (γ′) (C3)

∥T (τ)∥ ≤
∑
(υ,γ)

αcomm

(−−−−−−−−−−−−−−−−−−−−→{
Hπυ′ (γ′), (υ

′, γ′) ≺ (υ, γ)
}
, Hπυ(γ)

)
τp

p!
exp

(
2τ

∑
(υ′,γ′)≺(υ,γ)

∥Hπυ′ (γ′)∥
)

(C4)

+ αcomm

(−−−−−−−→{
Hπυ′ (γ′)

}
, H

)
τp

p!
exp

(
2τ

∑
(υ′,γ′)≺(υ,γ)

∥Hπυ′ (γ′)∥
)

(C5)

≤2
∑
(υ,γ)

αcomm

(−−−−−−−→{
Hπυ′ (γ′)

}
, Hπυ(γ)

)
τp

p!
exp

(
2τ

∑
(υ′,γ′)≺(υ,γ)

∥Hπυ′ (γ′)∥
)

(C6)

≤2Υ
Γ∑

γ=1

αcomm

(−−−−−−−→{
Hπυ′ (γ′)

}
, Hγ

)
τp

p!
exp

(
2τΥ

Γ∑
γ=1

∥Hγ∥
)

(C7)

αcomm

(−−−−−−−→{
Hπυ′ (γ′)

}
, Hγ

)
=

∑
q(1,1)+...+q(Υ,Γ)=p+1

(
p+ 1

q(1, 1) . . . q(Υ,Γ)

)∥∥∥adq(1,1)Hπ1(1)
. . . ad

q(Υ,Γ)
HπΥ(Γ)

(Hγ)
∥∥∥ (C8)

∑
q(1,1)+...+q(Υ,Γ)=p+1

∥∥∥adq(1,1)Hπ1(1)
. . . ad

q(Υ,Γ)
HπΥ(Γ)

(Hγ)
∥∥∥ ≤ Υp

Γ∑
γ1,...,γp+1=1

∥∥∥∥∥[Hγp+1
, . . . , [Hγ2

, Hγ1
]
]∥∥∥∥∥ (C9)

=⇒ ∥F(t)− etH∥ =O

(
α̃commt

p+1e2tΥ
∑Γ

γ=1∥Hγ∥

)
(C10)

10

[1] Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil
J. Ross, and Yuan Su, “Toward the First quantum sim-
ulation with quantum speedup, Proceedings of the Na-
tional Academy of Sciences”, 115 (2018), no. 38, 9456-
9461, https://arxiv.org/pdf/1711.10980.pdf

[2] Berry, Dominic W., Andrew M. Childs, and Robin
Kothari. ”Hamiltonian simulation with nearly optimal de-
pendence on all parameters.” 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science. IEEE,
2015. https://arxiv.org/pdf/1501.01715.pdf

[3] Childs, Andrew M., et al. ”Theory of trotter error
with commutator scaling.” Physical Review X 11.1
(2021): 011020. link here. Accompanying presentation:
https://simons.berkeley.edu/sites/default/files/docs/15639
/trottererrortheorysimons.pdf.

[4] Guo, Andrew Y., et al.“Implementing a fast unbounded
quantum fanout gate using power-law interactions.”

https://arxiv.org/pdf/2007.00662.pdf (2020).
[5] Høyer, Peter, and Robert Špalek. “Quantum fan-out

is powerful.” Theory of computing 1.1 (2005): 81-103.
https://www.theoryofcomputing.org/articles/v001a005/

[6] Levine, Harry, et al. ”Parallel implementation of
high-fidelity multiqubit gates with neutral atoms.”
Physical review letters 123.17 (2019): 170503
https://arxiv.org/abs/1908.06101.

[7] Low, Guang Hao, and Isaac L. Chuang. ”Hamiltonian
simulation by qubitization.” Quantum 3 (2019): 163.
https://arxiv.org/abs/1610.06546.

[8] Simulating Hamiltonian Dynamics - Azure Quantum
https://docs.microsoft.com/en-us/azure/quantum/user-
guide/libraries/chemistry/concepts/algorithms.

[9] Suzuki, Masao, “Fractal decomposition of exponential
operators with applications to many-body theories and
Monte Carlo simulations”. Phys. Lett. A 146, 319-323 ,
1990, https://doi.org/10.1016/0375-9601(90)90962-N

	Analysis of the Trotter Method for Hamiltonian Simulation
	Abstract
	Motivation
	Hamiltonian Simulation Problem
	The Trotter Method
	Basic Idea
	Product formulas

	Error bounds
	Applications for the Trotter Method
	k-local Hamiltonian
	Rapidly decaying power-law and quasilocal interactions

	 Proposed Implementation of QFT with multi-qubit gates
	Concluding remarks
	Error types
	Derivation of Trotter error with 1-norm
	Derivation of Trotter error with commutator scaling
	References

