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1 Introduction

Complexity theory quantifies the difficulty of solving computational problems and classifies such
problems by comparative difficulty. With recent experimental and theoretical advances in quantum
computation, there is renewed interest in studying the complexity of various quantum models of
computation.

In this project, we survey three essential classes in the study of quantum complexity and high-
light their relationships: NP in Section 3, QMA in Section 4, and MA in Section 5. Our selected
progression is designed to showcase the intuitive connections and interplay between definition and
characteristics that build off of each class. One focus is on situating the complexity class MA in
the landscape between the better-studied NP and QMA classes; to this end, we define stoquas-
tic Hamiltonians and other preliminaries in Section 2. As a preview, we will see that stoquastic
Hamiltonians lie on the presumed boundary between classical and quantum complexity, as quantum
objects which define a complete problem for a classical complexity class.

As our goal is to survey the landscape of complexity at a high-level, we omit many crucial
technical details (which can be found in the original papers), opting instead for proof sketches and
intuitive descriptions of main ideas. The purpose of this document, then, is to emphasize and
elucidate the relationships between these classes at an intuitive level, distilling some of the magic
of quantum in the world of complexity theory.

2 Preliminaries

Definition 2.1 (k-local Hamiltonian). A k-local Hamiltonian is a Hermitian operator H over n
qubits that is the sum of M k-local operators Ha:

H =
M∑
a=1

Ha (1)

Each k-local Ha acts non-trivially only on ≤ k qubits.

Definition 2.2 (Stoquastic k-local Hamiltonian). A k-local Hamiltonian is called stoquastic with
respect to a basis if every off-diagonal element of it in that basis is non-positive.
In this paper, we will use the shorthand “stoquastic Hamiltonian” to refer to a stoquastic k-local
Hamiltonian in the computational basis.

One particularly interesting property of stoquastic Hamiltonians is that their ground eigenstates
can always be taken to have non-negative components. To show this, we invoke a theorem:
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Theorem 2.3 (Perron-Frobenius). If all entries of a square matrix A are positive, then it has a
unique maximal eigenvalue. Its eigenvector has positive entries. [12]

Now given a stoquastic Hamiltonian H, consider the Hamiltonian A = I−βH. We can choose β
small enough such that all elements of A are non-negative. Note that the eigenvector of the largest
eigenvalue of A is the ground state of H. Then by the Perron-Frobenius theorem, the ground state
of H has positive entries. This result indicates that the ground states of stoquastic Hamiltonians
have a natural interpretation: that of a probability distribution.
As a direct example of this probability distribution interpretation, one class of stoquastic Hamil-
tonians are those with thermal ground states, of the form

p(x) = | ⟨ψ|x⟩ |2 = 1

Z
e−βEx =⇒ |ψ⟩ = 1√

Z

∑
x

e−βEx/2 |x⟩ (2)

where Z is the partition function of the (classical) system represented by this Hamiltonian, with
energy spectrum {Ex}.
Like this example, stoquastic Hamiltonians are commonly found in real-world problems. For in-
stance, all Hamiltonians in the Transverse Ising Model (TIM), which are of the form

H = −J
∑
⟨i,j⟩

ZiZj − g
∑
i

Xi (3)

are stoquastic. TIM Hamiltonians represent nearest-neighbor spin interactions plus an external
magnetic field in an atomic lattice. The physical relevance of this setup is based on its connections
to quantum optics experiments and quantum simulators.

3 NP Complexity Class

The complexity class NP, nondeterministic polynomial time, is a complexity class capturing a set
of decision problems where the proofs for “yes” instances are verifiable in polynomial time by a
Turing machine. Alternatively, this class can be interpreted as the set of problems that can be
solved in polynomial time by a nondeterministic Turing machine. Formally, we define NP below.

Definition 3.1 (NP). The class NP is the set of languages L that can be verified in deterministic
polynomial time. To determine if x ∈ L, the prover sends a proof y with |y| = poly(|x|) to the
verifier. Then,

x ∈ L =⇒ ∃y s.t. V (x, y) = 1,

x ̸∈ L =⇒ ∀y;V (x, y) = 0.
(4)

Observe that these statements are entirely deterministic in nature; there is no probabilistic
component to the two cases described.

3.1 Cook-Levin Theorem and NP-completeness

One of the most classical results in complexity theory is the Cook-Levin Theorem, which gives a
fundamental NP-complete problem.

Theorem 3.2 (Cook-Levin Theorem). The Boolean satisfiability problem (SAT) is NP-complete.
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We sketch the proof for this theorem, which proceeds in two parts, first showing that SAT is
in NP, and then that SAT is NP-hard. First, we see that any claimed satisfying assignment of
Boolean variables to a given expression can be efficiently verified by a Turing machine, so SAT is
indeed in NP.

Now, we consider any problem L supposedly in NP. Then, there is a Turing machine M which
checks if x ∈ L using y. We will construct a reduction of the operation of this machine to k-
SAT. First, we can represent the finite possibilities of the state of the machine and its time as an
assignment; this assignment represents, in essence, the history of a computation. Then, we can
construct a k-SAT formula which checks that the evolution of the machine is valid: it will check if
the ith tape location at time t+ 1 follows logically from the i− 1, i, i+ 1st tape locations at time
t. If every step in the computation is valid, as are its start and end states, then we have a valid
computation history, which can be verified efficiently.

In particular, we need only perform local verification of the evolution of the machine; thus, we
can represent each verification as a k-clause. Indeed, this reduction actually produces a k-SAT
instance, which is a subproblem of the more general SAT problem. We will soon see how this local
property leads naturally to the quantum analog in other complexity classes.

4 QMA Complexity Class

The idea of quantum nondeterminism was first introduced and studied by Knill [11], and further
explored in the complexity class QMA by Kitaev [10]. QMA, also known as BQNP, is intuitively
understood as the quantum analog of the class NP in a probabilistic setting. Thus, the relationship
between QMA and BQP can be understood as the quantum version of the relationship between
NP and P. Formally, we define QMA below.

Definition 4.1 (QMA). The class QMA is the set of languages L that can be verified in a polyno-
mial size quantum circuit. To determine if x ∈ L, the prover sends a proof |ψ⟩ with | |ψ⟩ | = poly(|x|)
qubits to the verifier. Then, the verifier runs a quantum circuit V with number of gates also
poly(|x|).

x ∈ L =⇒ ∃ |ψ⟩ s.t. P[V (x, |ψ⟩] = 1] ≥ 2

3
,

x ̸∈ L =⇒ ∀ |ψ⟩ ;P[V (x, |ψ⟩] = 1] ≤ 1

3
.

(5)

A diagram displaying an example verification circuit is shown in Appendix A.1.

Note the two key differences between this definition of QMA and the previous definition of NP:
1. the classical witness proof y has been replaced by a quantum witness state |ψ⟩, and 2. the
conditions are framed probabilistically. These two changes are crucial for any quantum analogy,
due to the inherently probabilistic nature of the quantum world.

4.1 QMA-completeness

We will see that the Local Hamiltonian problem is QMA-complete. First, we define the Local
Hamiltonian problem, which is a quantum version of the classical Boolean k-SAT problem.

Definition 4.2 (Quantum k-SAT (Local Hamiltonian)). Quantum k-SAT (also known as the Local
Hamiltonian problem) is the quantum analog of the Boolean satisfiability problem k-SAT. The input
is a set of positive semi-definite k-local Hamiltonians H1, H2, . . . ,HM , where each Ha represents a
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clause that must be satisfied, just as the clauses in classical k-SAT. Satisfying a clause Ha means
finding an eigenvector with eigenvalue 0. Thus for “yes” instances which satisfy all clauses, there
exists some ground state |ψ⟩ such that

∀a, Ha |ψ⟩ = 0 =⇒ H |ψ⟩ = 0, H ≡
M∑
a=1

Ha (6)

where we have defined the combined Hamiltonian H. For “no” instances, we have ∀ |ψ⟩ , H |ψ⟩ ≥ ϵ
for some separation parameter ϵ.

We provide a comparison of the analogies between the classical and quantum k-SAT problems
in Table 1, provided in Appendix A.1.

In a classic result, Kitaev first showed that the 5-Local Hamiltonian problem is QMA-complete
[10]. As full proofs of the Local Hamiltonian problem being QMA-complete are discussed in detail
elsewhere [3], we simply highlight the main ideas in this completeness construction.

In the first step to showing QMA-completeness, we verify that k-SAT is indeed in QMA.

Theorem 4.3. The k-Local Hamiltonian problem is in QMA.

The main idea behind the proof to this theorem relies on the observation that if x ∈ L, then there
exists a ground state with small eigenvalues; otherwise, any witness state used has large eigenvalues.
If all HamiltoniansHi were simple projectionsHi = |αi⟩⟨αi|, then we could easily verify by randomly
selecting an i as the basis and measuring |η⟩ in the basis {|αi⟩ ,

∣∣α⊥
i

〉
}. In general, we rotate the

qubits of each term of the local Hamiltonian Hi based on its spectral decomposition, and then
proceed as in the projections case by measuring in a basis of a randomly chosen local Hamiltonian.
It can be shown that this procedure produces the desired output with high probability.

Next, we complete the proof for QMA-completeness of k-SAT.

Theorem 4.4. The k-Local Hamiltonian problem is QMA-hard.

That is, we wish to show a reduction of any QMA problem to a k-Local Hamiltonian problem.
Recall that for a QMA language L, an input x ∈ L can be verified by a polynomial size quantum
circuit with a witness |ψ⟩. Drawing inspiration from the proof of the classical Cook-Levin Theorem,
we aim to locally verify the history of our computation, which can be written as a sequence of states.

However, quantum computation is not locally checkable, as a reduced density matrix may be
indistinguishable for two different states; the CAT state is well-known as an illuminating example of
this technicality. In order to address this issue, we verify the computation with a superposition over
the entire history, including the clock register. This idea of moving from checking each step in time-
evolution to an overall time-independent local Hamiltonian was originated in part by Feynman, and
is shown by the superposition history state:

|history⟩ = 1√
T + 1

T∑
t=0

Ut . . . U1 |x, ψ⟩ |t⟩ (7)

Another key difference from the classical reduction involves the continuous nature of the quan-
tum model; while showing that the classical eigenvalue is nonzero is sufficient for soundness (as
discreteness ensures it is at least 1), the quantum eigenvalue needs to be polynomially bounded
away from 0. Kitaev shows this stronger condition with a geometric application of Jordan’s Lemma.

In his original result, Kitaev proved that this reduction holds for 5-local Hamiltonians, as he
uses a unary representation of time with 3 qubits. Later, Kempe, Kitaev, and Regev improved this
result to show that k-local Hamiltonians for any k ≥ 2 are also QMA-complete, using linear algebra
and perturbation theory arguments, the details of which exceed the scope of this comparison [9].
Further QMA-complete problems are listed in [5].
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5 MA Complexity Class

5.1 Preliminaries

The class MA was first introduced by Babai [4] as one of a set of classes “just above NP”, defined
by a wizard Merlin that attempts to convince a king Arthur that a string x belongs to a language
L using statistical evidence. MA refers to the case where Merlin sends only one message to Arthur,
and thus can be thought of as the probabilistic analogue of the class NP.

Definition 5.1 (MA). Concretely, MA consists of all problems for which there is a probabilistic
polynomial-time verifier V that takes problem inputs x and witnesses w such that

x ∈ L =⇒ ∃ w s.t. P[V (x,w) = 1] ≥ pyes,

x /∈ L =⇒ ∀ w; P[V (x,w) = 1] ≤ pno.
(8)

and pyes − pno = 1/poly(|x|) [8].

Curiously, the only natural example of an MA-complete problem is quantum in nature. This
is known as the stoquastic k-SAT problem. To understand this problem, we build off of the more
general quantum k-SAT defined in Section 4, also known as the Local Hamiltonian problem.

Stoquastic k-SAT is simply a restricted version of quantum k-SAT:

Definition 5.2 (Stoquastic k-SAT). Stoquastic k-SAT is an instance of quantum k-SAT where
every Ha is stoquastic; that is each local Ha has non-positive off-diagonal elements.

Theorem 5.3. Stoquastic k-SAT is MA-complete.

We prove this theorem by showing that stoquastic k-SAT is both in MA and MA-hard.

5.2 Stoquastic k-SAT is in MA

To show stoquastic k-SAT is in MA, Bravyi and Terhal construct a probabilistic verifier that,
for a given |ψ⟩, checks if |ψ⟩ satisfies the stoquastic Hamiltonian H [6]. Instead of being given
the complete description of |ψ⟩, the verifier only requires a single basis element |x0⟩ with nonzero
amplitude in |ψ⟩ as a witness. Note that |ψ⟩ satisfying H necessarily implies |x0⟩ will have a non-
zero projection into the 0-eigenspace of every Ha (which is the space of satisfying solutions). In
other words, denoting the projector into the 0-eigenspace of Ha as Πa, this condition means

⟨x0|Πa |x0⟩ > 0 (9)

The verifier then simulates a random walk, starting at the basis element it is given and sampling
the probability distribution at each step to progress to another basis element. At every step, it
obtains the current state |x⟩ and checks that the random walk distribution is properly normalized,
and that ⟨x|Πa |x⟩ > 0 still holds. If H is satisfiable, the random walk will be well-defined and will
proceed always within the set of all basis elements with non-zero amplitude in |ψ⟩. This means the
above two conditions will always be met. If H is not satisfiable, then the random walk will contain
a component in the 0-eigenspaces Πa with exponentially decreasing (in the number of walk steps)
probability. Eventually, the random walk will run into a state for which

⟨x|Πa |x⟩ = 0 (10)

and the verifier knows to reject the witness.
As this result is one of the core topics of this review, we provide the details of this proof in
Appendix A.2.
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5.3 Stoquastic k-SAT is MA-hard

To prove the completeness condition of stoquastic k-SAT within MA, it remains to show that any
problem in MA can be reduced to it. Bravyi and Terhal show this in the following sequence:

1. Define a quantum analogue to MA, denoted MAq, where the verifier Vx for a particular
problem input x is a classical reversible circuit that takes as input a quantum witness |χ⟩ and
a set of ancilla qubits initialized to |0⟩. A |+⟩ state substitutes for the randomness in MA.

2. Show MAq = MA. Since Vx is classical, one can show that a satisfying quantum witness |χ⟩
exists if and only if a satisfying single basis state witness exists; the replaced randomness
from the |+⟩ state does not change the outcome. Thus both Vx and |χ⟩ can be taken to be
classical, which means MAq = MA.

3. Using the clock construction, show that we can define a 6-local Hamiltonian whose ground
state energy is 0 if and only if x is a “yes” instance. Specifically, consider the set of gates in
Vx, and construct a clock Hamiltonian that verifies the correct evaluation of Vx gate-by-gate,
with Vx outputting 1 at the end.

4. Show that the above clock Hamiltonian is stoquastic, which follows trivially from writing its
description down. Thus one can determine if it is satisfiable using stoquastic k-SAT, which
means we can reduce any problem in MA to stoquastic 6-SAT.

5.4 Comparison to QMA

While quantum k-SAT is significant for being QMA-hard, the key idea for stoquastic k-SAT is
that it resides in MA. Thus, intuitively, k-SAT and stoquastic k-SAT lie on either side of the
border between QMA and MA, establishing stoquasticity as critical to understanding the distinction
between quantum and classical complexity.

6 Conclusion and Future Work

In this report, we compare the complexity classes NP, QMA, and MA, and discuss the differences
in their respective completeness problems. These classes are related to each other via the following
inclusions, which may or may not be unconditionally strict:

P ⊆ NP ⊆ MA ⊆ QMA ⊆ PSPACE (11)

Of particular interest is the inclusion MA ⊆ QMA, as this represents the nominal transition from
classical to quantum computation. By investigating complete problems for both MA and QMA, we
have discovered that stoquastic k-SAT is a problem that lies on the border between classical and
quantum complexity.

As an extension to the described hierarchy, work has been done relating the complexity class
QMA to QCMA, which involves QMA restricted to a classical witness |α⟩ [1]. These investigations
aim to reveal where quantum proofs offer a computational advantage over classical proofs, if any.

As alluded to in our project, stoquastic Hamiltonians also provide other crucial roles in the
study of complexity theory. One incredible result is the introduction of problems in the Tranverse
field Ising Model (TIM), a very physically relevant model, and showing that estimating the ground
state energy of TIM is StoqMA-complete, an extension of MA [7]. A recent result connects the
gap amplification of stoquastic Local Hamiltonians to progress on the quantum PCP conjecture, a
long-standing and important question in the field [2].
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|x⟩

V

V (x, |ψ⟩)

|ψ⟩

|ψ⟩

Figure 1: Example verification circuit for QMA.

Table 1: Comparison of classical and quantum k-SAT problems.

Classical Quantum

Constraint Satisfiability Problem (CSP) ϕ Hamiltonian H =
∑M

a=1Ha

Variable xi Qubit |xi⟩
k-Constraint (x1 ∨ x2 ∨ · · · ∨ xk) k-Local Hamiltonian Ha

Assignment y Quantum state |ψ⟩
Number satisfied constraints for y Energy of |ψ⟩ for Hamiltonian ⟨ψ|H |ψ⟩ = λ

Satisfying assignment Hamiltonian ground state |η⟩

A Appendix

A.1 Miscellaneous figures and tables

In Figure 1, we display an example of the QMA verification circuit.
In Table 1, we compare the analogous components of the classical and quantum k-SAT problems.

A.2 Stoquastic k-SAT is in MA

Consider an instance of stoquastic k-SAT. We can find the projectors {Πa} onto the 0-eigenspaces
of the Hamiltonians {Ha} efficiently, since each Ha is local. Now suppose H is satisfiable by |ψ⟩,
so by definition Πa |ψ⟩ = |ψ⟩ for all a. Define S ⊆ {0, 1}n as the set of basis states with non-zero
amplitudes in |ψ⟩:

S ≡ {x : ⟨x|ψ⟩ > 0} (12)

Note that ⟨x|ψ⟩ > 0 ⇐⇒ ⟨x|ψ⟩ ≠ 0 since H is stoquastic.
Now we define a random walk over this set S, with the transition probability

Pxy =
⟨y|ψ⟩
⟨x|ψ⟩

1

M

M∑
a=1

⟨x|Πa |y⟩ (13)

To see this is a well-defined random walk if H is satisfiable, first note∑
y

Pxy =
1

M

∑
a

⟨x|Πa

∑
y

|y⟩ ⟨y| |ψ⟩
⟨x|ψ⟩

=
1

M

∑
a

⟨x|Πa |ψ⟩
⟨x|ψ⟩

=
1

M

∑
a

⟨x|ψ⟩
⟨x|ψ⟩

= 1 (14)

Secondly, Pxy ̸= 0 ⇐⇒ ⟨y|ψ⟩ ≠ 0, so if the random walk starts in S it can never leave S.
So how can we compute Pxy? Consider the 0-eigenspace of Ha, spanned by orthonormal {|ψi⟩}.
Then

Πa =
∑
i

|ψi⟩ ⟨ψi| (15)
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Since Πa |ψ⟩ = |ψ⟩, we have that |ψ⟩ = |ψi⟩ for some i. Furthermore, since ⟨ψi|ψj⟩ = δij and
the elements of |ψi⟩ are all non-negative, we have ⟨x|ψi⟩ > 0 =⇒ ⟨x|ψj⟩ = 0 for i ̸= j. So if
⟨x|ψ⟩ , ⟨y|ψ⟩ > 0, then √

⟨x|Πa |x⟩√
⟨y|Πa |y⟩

=

√
⟨x|ψ⟩ ⟨ψ|x⟩√
⟨y|ψ⟩ ⟨ψ|y⟩

=
⟨x|ψ⟩
⟨y|ψ⟩

(16)

Thus for any arbitrary a,

Pxy =

√
⟨x|Πa |x⟩√
⟨y|Πa |y⟩

1

M

M∑
a′=1

⟨x|Πa′ |y⟩ (17)

To compute this, all we have to do is access the elements of Πa for a given a. This is efficient,
because we can effectively diagonalize Ha in its non-trivial subspace and find the complete matrix
description of Πa in that subspace. Furthermore, |S| ≤ 2kM , since each component in |ψ⟩ must
be acted upon non-trivially by H to send its amplitude to 0, and H acts on at most 2kM terms
non-trivially. This means one state can only transition to at most 2kM other states. So if we
simulate the random walk only storing the current state (in terms of a computational basis state),
to perform one step of this simulation we only need to perform a constant (with respect to the
number of qubits n of H) number of operations.

A.2.1 Completeness

After every step of the walk which gives the current state |x⟩, we check that |x⟩ is still in the ground
eigenspace of every Ha by evaluating

⟨x|Πa |x⟩ > 0 (18)

for all a. If at any point this condition is not satisfied, we reject the witness.
If |ψ⟩ satisifies H, the above check will always be true, because x will remain in S throughout the
walk and thus

⟨x|Πa |x⟩ = ⟨x|ψ⟩ ⟨ψ|x⟩ > 0 (19)

for all a.

A.2.2 Soundness

What if H is not satisfiable? Then there is no state |ψ⟩ such that H |ψ⟩ = 0. This means that the
random walk may have unnormalized probabilities, since the normalization relies on ⟨x|Πa |ψ⟩ =
⟨x|ψ⟩. This provides one check that we can apply as we’re simulating the random walk: if all of
a sudden the probabilities become unnormalized, then we know to reject the witness. This does
not detect every unsatisfiable H, however. We also need to analyze the aforementioned condition
⟨x|Πa |x⟩ > 0.
First define

G ≡ 1

M

M∑
a=1

Πa (20)

as used in the definition of Pxy. H being unsatisfiable means for any |ψ⟩

H |ψ⟩ ≥ ϵ =⇒ ⟨ψ|G |ψ⟩ ≤ 1− δ (21)

for some δ. So the largest eigenvalue of G is 1− δ. Now define D as the set of all “good” random
walk states:

D ≡ {x : ∀ a , ⟨x|Πa |x⟩ > 0} (22)
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We wish to find the probability that the walk remains in D, as once it leaves D we know to reject.
This can be found by simply enumerating every possible path the walk can take from an initial
state x0 to a state xL after L steps:

P[x1, x2, . . . , xL ∈ D] =
∑

x1,x2,...,xL∈D
Px0→x1Px1→x2 . . . PxL−1→xL (23)

Now, note

Pxi→xi+1 =
ri
ri+1

⟨xi|G |xi+1⟩ , ri ≡
√
⟨x|Πa |x⟩ (24)

So

P[x1, x2, . . . , xL ∈ D] =
∑

x1,x2,...,xL∈D

r0
rL

⟨x0|G |x1⟩ ⟨x1|G |x2⟩ ⟨x2| . . . |xL−1⟩ ⟨xL−1|G |xL⟩

=
∑

x1,x2,...,xL∈D

r0
rL

⟨x0|GL |xL⟩
(25)

Since the maximum eigenvalue of G is 1 − δ, GL will exponentially approach 0. Since the rest of
the above expression does not change with increasing L, this means the probability of remaining
in D decreases exponentially with L, so we know to reject the witness quickly.

10


	Introduction
	Preliminaries
	NP Complexity Class
	Cook-Levin Theorem and NP-completeness

	QMA Complexity Class
	QMA-completeness

	MA Complexity Class
	Preliminaries
	Stoquastic k-SAT is in MA
	Stoquastic k-SAT is MA-hard
	Comparison to QMA

	Conclusion and Future Work
	Appendix
	Miscellaneous figures and tables
	Stoquastic k-SAT is in MA
	Completeness
	Soundness



