Efficient learning of commuting hamiltonians on lattices

Anurag Anshu, Srinivasan Arunachalam, Tomotaka Kuwahara, Mehdi Soleimanifar

March 23, 2021

Background: In a recent work [AAKS20] we constructed an algorithm to learn the hamiltonian from a Gibbs state at any constant temperature. The algorithm is sample-efficient (polynomially tight) when the learning is required for small ℓ_2 error. It is time-efficient above critical temperatures and for stoquastic hamiltonians.

In this note, we consider the Gibbs state of a commuting hamiltonian and provide an algorithm that is both sample-efficient and time-efficient at any constant temperature (and works for small ℓ_{∞} error).

TL;DR: Effective hamiltonian of the reduced state of a 'commuting Gibbs state' is also local. Thus, learning can be performed locally.

0.1 Notation and effective hamiltonian

Fix a D-dimensional lattice and let each spin have dimension d. Consider a k-local hamiltonian

$$H = \sum_{\ell=1}^{m} h_{\ell} \tag{1}$$

with $||h_{\ell}|| \leq 1$ ($\forall \ell$, where ||.|| denotes the ℓ_{∞} norm) and assume that $[h_{\ell}, h_{\ell'}] = 0$ ($\forall \ell, \ell'$). Let h_R denote the hamiltonian restricted to a region R. Let $\rho_{\beta} = \frac{e^{-\beta H}}{\text{Tr}(e^{-\beta H})}$ be the Gibbs state. For any region R on the lattice, define the effective hamiltonian $H_R = \frac{-1}{\beta} \log \text{Tr}_{R^c}(\rho_{\beta})$. Let ∂R be the boundary of R, and $\partial_- R$ be the inner boundary of R. The following lemma says that the effective Hamiltonian is local. It is not known to hold in the general case, except above critical temperatures [KKBa20, Theorem 2].

Lemma 1. It holds that

$$H_R = \alpha_R I + h_R + \Phi,$$

where Φ is only supported on $\partial_{-}R$ and $[\Phi, h_R] = 0$. Here, α_R is some real number and $\|\Phi\| \leq 2|\partial R|$.

Proof. We can write $H = h_R + h_{\partial R} + h_{R^c}$. Consider

$$\operatorname{Tr}_{R^{c}}\left(e^{-\beta H}\right) = e^{-\beta h_{R}}\operatorname{Tr}_{R^{c}}\left(e^{-\beta(h_{\partial R}+h_{R^{c}})}\right).$$

Define $e^{-\beta\Phi} := \operatorname{Tr}_{R^c} \left(e^{-\beta(h_{\partial R} + h_{R^c})} \right)$. It is clear that $[\Phi, h_R] = 0$ and hence H_R has the form as stated in the lemma. In order to bound the norm of Φ , we proceed as follows. Consider,

$$h_R + h_{R^c} - |\partial R| I \preceq H \preceq h_R + h_{R^c} + |\partial R| I$$

Since every term commutes, we can exponential the Lowner inequality to obtain

$$e^{-\beta|\partial R|}e^{-\beta h_R}\otimes e^{-\beta h_{R^c}} \preceq e^{-\beta H} \preceq e^{\beta|\partial R|}\otimes e^{-\beta h_R}e^{-\beta h_{R^c}}.$$

Tracing out the region R^c , this means that

$$e^{-\beta|\partial R|} \operatorname{Tr}\left(e^{-\beta h_{R^{c}}}\right) e^{-\beta h_{R}} \preceq \operatorname{Tr}_{R^{c}}\left(e^{-\beta H}\right) \preceq e^{\beta|\partial R|} \operatorname{Tr}\left(e^{-\beta h_{R^{c}}}\right) e^{-\beta h_{R}}$$

Thus, the ratio between largest and smallest eigenvalues of $e^{\beta h_R} \operatorname{Tr}_{R^c} (e^{-\beta H}) = e^{-\beta \Phi}$ is upper bounded by $e^{2\beta |\partial R|}$. This completes the proof.

The above lemma ensures the following identity

$$\operatorname{Tr}_{R^{c}}(\rho_{\beta}) = \frac{e^{-\beta(h_{R}+\Phi)}}{\operatorname{Tr}\left(e^{-\beta(h_{R}+\Phi)}\right)}.$$

0.2 Learning algorithm

For every ℓ , let R_{ℓ} be the smallest region that contains $\operatorname{supp}(h_{\ell})$ in its strict interior (that is, it does not overlap with $\partial_{-}R_{\ell}$). We have $|R_{\ell}| \leq (3k)^{D}$. Then $\operatorname{Tr}_{R_{\ell}^{c}}(\rho_{\beta}) = \frac{e^{-\beta\left(h_{R_{\ell}}+\Phi_{\ell}\right)}}{\operatorname{Tr}\left(e^{-\beta\left(h_{R_{\ell}}+\Phi_{\ell}\right)}\right)}$, where Φ_{ℓ} is only supported $\partial_{-}R_{\ell}$. Since $|\Phi_{\ell}| \leq 2|\partial R_{\ell}|$, the smallest eigenvalue of $\frac{e^{-\beta\left(h_{R_{\ell}}+\Phi_{\ell}\right)}}{\operatorname{Tr}\left(e^{-\beta\left(h_{R_{\ell}}+\Phi_{\ell}\right)}\right)}$ is at least $e^{-\beta\left(|R_{\ell}|+|\partial R_{\ell}|\right)}$

$$\frac{e^{-\beta(|R_\ell|+|\partial R_\ell|)}}{d^{|R_\ell|}} \ge e^{-(\beta + \log d)(3k)^D}.$$

The algorithm is as follows. We divide $\{R_\ell\}_{\ell=1}^m$ into different batches, such that within each batch the R_ℓ 's don't overlap. Number of batches needed is $(kD)^D$ (a constant). Within each batch, we perform tomography to obtain the classical description of $\frac{e^{-\beta(h_{R_\ell}+\Phi_\ell)}}{\operatorname{Tr}\left(e^{-\beta(h_{R_\ell}+\Phi_\ell)}\right)}$ upto an error of $\epsilon e^{-(\beta+\log d)(3k)^D}$. This gives us a classical description of an operator h' satisfying $\|h' - h_{R_\ell} - \Phi_\ell\| \leq \epsilon$. From this, h_ℓ can be computed by evaluating

$$h'_{\ell} := rac{1}{d^{|R_{\ell}|}} \sum_{j=1}^{d^{2k}} \sigma_{\ell}^{(j)} \mathrm{Tr}\left(\sigma_{\ell}^{(j)} h'
ight),$$

where $\{\sigma_{\ell}^{(j)}\}_{j=1}^{d^{2k}}$ are the Pauli operators in the support of h_{ℓ} . It can be seen that

$$\|h_{\ell}' - h_{\ell}\| \le d^{2k}\epsilon.$$

In order to perform the tomography in each batch with probability of success $1 - \frac{\delta}{\text{number of batches}}$, the number of samples needed is [CW20, BMBO20, HKP20]

$$\frac{e^{2(\beta + \log d)(3k)^{D}}}{\epsilon^{2}} \log \left(m \frac{\text{number of batches}}{\delta} \right) \le \frac{e^{2(\beta + \log d)(3k)^{D}}}{\epsilon^{2}} \log \frac{m \left(kD \right)^{D}}{\delta}$$

Thus, setting d = O(1), total sample complexity is (accounting for all the batches)

$$\frac{e^{\mathcal{O}\left(\beta k^{D}\right)}}{\epsilon^{2}}\log\frac{m}{\delta}.$$

Time complexity is roughly

$$m \cdot \frac{e^{\mathcal{O}\left(\beta k^D\right)}}{\epsilon^2} \log \frac{m}{\delta},$$

as the time complexity for processing the data from each sample is roughly $m \cdot e^{\mathcal{O}(\beta k^D)}$.

References

- [AAKS20] A. Anshu, S. Arunachalam, T. Kuwahara, and M. Soleimanifar. Sample-efficient learning of quantum many-body systems. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 685–691, 2020.
- [BMBO20] Xavier Bonet-Monroig, Ryan Babbush, and Thomas E. O'Brien. Nearly optimal measurement scheduling for partial tomography of quantum states. *Phys. Rev. X*, 10:031064, Sep 2020.
- [CW20] Jordan Cotler and Frank Wilczek. Quantum overlapping tomography. *Physical Review Letters*, 124(10):100401, 2020.
- [HKP20] Hsin-Yuan Huang, Richard Kueng, and John Preskill. Predicting many properties of a quantum system from very few measurements. *Nature Physics*, 16(10):1050–1057, Oct 2020.
- [KKBa20] Tomotaka Kuwahara, Kohtaro Kato, and Fernando G. S. L. Brandão. Clustering of conditional mutual information for quantum gibbs states above a threshold temperature. *Physical Review Letters*, 124:220601, 2020.