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Background: In a recent work [AAKS20] we constructed an algorithm to learn the hamiltonian from a
Gibbs state at any constant temperature. The algorithm is sample-efficient (polynomially tight) when the
learning is required for small `2 error. It is time-efficient above critical temperatures and for stoquastic
hamiltonians.

In this note, we consider the Gibbs state of a commuting hamiltonian and provide an algorithm that is
both sample-efficient and time-efficient at any constant temperature (and works for small `∞ error).

TL;DR: Effective hamiltonian of the reduced state of a ‘commuting Gibbs state’ is also local. Thus, learning
can be performed locally.

0.1 Notation and effective hamiltonian

Fix a D-dimensional lattice and let each spin have dimension d. Consider a k-local hamiltonian

H =

m∑
`=1

h` (1)

with ‖h`‖ ≤ 1 (∀`, where ‖.‖ denotes the `∞ norm) and assume that [h`, h`′ ] = 0 (∀`, `′). Let hR denote
the hamiltonian restricted to a region R. Let ρβ = e−βH

Tr(e−βH)
be the Gibbs state. For any region R on the

lattice, define the effective hamiltonian HR = −1
β log TrRc (ρβ). Let ∂R be the boundary of R, and ∂−R be

the inner boundary of R. The following lemma says that the effective Hamiltonian is local. It is not known
to hold in the general case, except above critical temperatures [KKBa20, Theorem 2].

Lemma 1. It holds that
HR = αRI + hR + Φ,

where Φ is only supported on ∂−R and [Φ, hR] = 0. Here, αR is some real number and ‖Φ‖ ≤ 2|∂R|.

Proof. We can write H = hR + h∂R + hRc . Consider

TrRc
(
e−βH

)
= e−βhRTrRc

(
e−β(h∂R+hRc )

)
.

Define e−βΦ := TrRc
(
e−β(h∂R+hRc )

)
. It is clear that [Φ, hR] = 0 and hence HR has the form as stated in

the lemma. In order to bound the norm of Φ, we proceed as follows. Consider,

hR + hRc − |∂R|I � H � hR + hRc + |∂R|I.

Since every term commutes, we can exponential the Lowner inequality to obtain

e−β|∂R|e−βhR ⊗ e−βhRc � e−βH � eβ|∂R| ⊗ e−βhRe−βhRc .
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Tracing out the region Rc, this means that

e−β|∂R|Tr
(
e−βhRc

)
e−βhR � TrRc

(
e−βH

)
� eβ|∂R|Tr

(
e−βhRc

)
e−βhR .

Thus, the ratio between largest and smallest eigenvalues of eβhRTrRc
(
e−βH

)
= e−βΦ is upper bounded by

e2β|∂R|. This completes the proof.

The above lemma ensures the following identity

TrRc (ρβ) =
e−β(hR+Φ)

Tr
(
e−β(hR+Φ)

) .
0.2 Learning algorithm

For every `, let R` be the smallest region that contains supp (h`) in its strict interior (that is, it does not

overlap with ∂−R`). We have |R`| ≤ (3k)D. Then TrRc` (ρβ) = e
−β(hR`+Φ`)

Tr

(
e
−β(hR`+Φ`)

) , where Φ` is only

supported ∂−R`. Since |Φ`| ≤ 2|∂R`|, the smallest eigenvalue of e
−β(hR`+Φ`)

Tr

(
e
−β(hR`+Φ`)

) is at least

e−β(|R`|+|∂R`|)

d|R`|
≥ e−(β+log d)(3k)D .

The algorithm is as follows. We divide {R`}m`=1 into different batches, such that within each batch the
R`’s don’t overlap. Number of batches needed is (kD)D (a constant). Within each batch, we perform

tomography to obtain the classical description of e
−β(hR`+Φ`)

Tr

(
e
−β(hR`+Φ`)

) upto an error of εe−(β+log d)(3k)D . This

gives us a classical description of an operator h′ satisfying ‖h′ − hR` − Φ`‖ ≤ ε. From this, h` can be
computed by evaluating

h′` :=
1

d|R`|

d2k∑
j=1

σ
(j)
` Tr

(
σ

(j)
` h′

)
,

where {σ(j)
` }

d2k

j=1 are the Pauli operators in the support of h`. It can be seen that

‖h′` − h`‖ ≤ d2kε.

In order to perform the tomography in each batch with probability of success 1 − δ
number of batches , the

number of samples needed is [CW20, BMBO20, HKP20]

e2(β+log d)(3k)D

ε2
log

(
m

number of batches
δ

)
≤ e2(β+log d)(3k)D

ε2
log

m (kD)D

δ
.

Thus, setting d = O(1), total sample complexity is (accounting for all the batches)

eO(βkD)

ε2
log

m

δ
.

Time complexity is roughly

m · e
O(βkD)

ε2
log

m

δ
,

as the time complexity for processing the data from each sample is roughly m · eO(βkD).
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