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Robust self-testing of a singlet via the CHSH game

1 Introduction
Quantum entanglement forms a crucial component of many quantum information applications,

including quantum key distribution (QKD), quantum networks, and measurement-based quantum
computing. As such, a scheme for entanglement verification is necessary to ensure that a given state
exhibits the requisite entangled properties. Nonlocal games, which consist of spatially separated
players prohibited from direct communication, have the ability to indicate quantum entanglement;
through measurements on a shared entangled state, the players may implement a quantum strategy
that bests any classical strategy. The Clauser-Horne-Shimony-Holt (CHSH) game [CHSH69] is an
example of such a nonlocal game that discriminates between classical and quantum approaches. The
crux of these games lies in the correlations engendered by quantum entanglement—entangled states
exhibit quantum correlations that cannot be replicated through classical statistics, a phenomenon
known as Bell non-locality [Bel64]. Thus, as the measurements that players make on their shared
entangled state will be non-classically correlated, the players can achieve a higher likelihood of success
by basing their answers off the results of their measurements.

So, if players have access to an entangled state, then they can win the CHSH game with a higher
probability than with any classical strategy. In order for the game to certify quantum entanglement,
however, the converse must also be true: that is, if the correlations observed in the CHSH game
surpass some classical threshold, then quantum entanglementmust be present. Tying the observation
of a specific set of correlations to a specific entangled state, such as a singlet, is known as self-testing.
Coined by Mayers and Yao in [MY04], self-testing aims to identify particular correlations that can
only be realized by particular physical states. Self-testing schemes can then be employed to achieve
device-independent verification of specific entangled states: without any knowledge of the details of
physical preparation, the presence of a particular state can be checked by simply conducting a set of
correlation measurements.

This work is a brief introduction to the self-testing of quantum systems. A mathematical for-
mulation of self-testing is first presented. As a concrete example, the CHSH game is shown to be a
self-test for one singlet. Further extensions and future directions are highlighted in the conclusion.
For a comprehensive review of self-testing, see [ŠB20].

2 Robust self-testing1

Let’s say that Alice and Bob have access to a device which purports to output some bipartite
entangled state |ψ⟩AB. They then wish to check that the actual physical state |ϕ⟩A′B′ is equivalent to
the target |ψ⟩AB. Here, A (B) denotes Alice’s (Bob’s) respective subsystem, with primes indicating
the physical, rather than the ideal, subsystem. To do so, they conduct a set of measurements on
their respective parts of ρA′B′ . They repeat these measurements for multiple trials, obtaining a new,
identical state |ϕ⟩A′B′ from the device for each trial. In this manner, after gathering their outcomes
from repeated trials, they will be able to estimate the correlation of their outcomes. If they find that
this correlation reaches a certain maximal value, then they can say that the physical state |ϕ⟩A′B′

outputted by the device is, in some sense, the same as the desired entangled state |ψ⟩AB. This
process is known as the self-testing of |ψ⟩AB.

Now, let’s formulate this procedure more rigorously. We want to test whether a physical state
|ϕ⟩A′B′

2 in HA′ ⊗HB′ is the same as an ideal entangled state |ψ⟩AB in HA⊗HB
3. Let Alice’s (Bob’s)

1The ideas presented here take inspiration from [ŠB20].
2We assume the form of a pure state WLOG as we can always consider |ϕ⟩A′B′P to be the purification of some

ρA′B′ , with the operators in the self-testing scheme acting trivially on the purification space P .
3Note that we make no assumptions about the physical Hilbert spaces HA′ ,HB′ ; they do not need to be the same

dimension as HA, HB.
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measurements on subsystem A′ (B′) be labeled by x(y) and their outcomes by a(b). These are
realized by projective operators {Πa|x} on subsystem A′ and {Πb|y} on subsystem B′. A correlation
P (a, b|x, y) is then given by

P (a, b|x, y) = ⟨Πa|xΠb|y⟩ = Tr
{
|ϕ⟩⟨ϕ|A′B′ Πa|xΠb|y

}
. (1)

Self-testing thus strives to infer the form of |ϕ⟩A′B′ from observing P (a, b|x, y).
We must additionally quantify what it means for |ϕ⟩A′B′ to be “the same” as |ψ⟩AB. Here, we

note that it is impossible to determine the exact form of |ϕ⟩A′B′ just from P (a, b|x, y) alone. To see
why this is true, note that the statistics of P (a, b|x, y) can be reproduced by using the rotated state
U⊗V |ϕ⟩A′B′ and measurements {UΠa|xU

†}, {VΠb|yV
†} , where U and V are two unitary operators.

Moreover, the measurement operators may act trivially on certain degrees of freedom within a larger
system. In this case, a state |ϕ⟩ ⊗ |ξ⟩ and operators {Πa|x ⊗ 1}, {Πb|y ⊗ 1}, where the identity acts
on |ξ⟩, also yields the same P (a, b|x, y). To account for these unknowns, we define equivalence using
local isometries.

Local isometry

Definition 2.1. An isometry
Φ : HA1 → HA2

is a linear transformation on quantum states that preserves the inner product. It can be seen
as a unitary operator that has the ability to increase the dimension of the space, so

Φ |ψ⟩A1
= U |ψ⟩A2

,

where dim(A2) > dim(A1) and U is unitary.
A local isometry

ΦA1 ⊗ ΦB1 : HA1 ⊗HB1 → HA2 ⊗HB2

consists of local quantum operations; it is a tensor product of isometries which act locally.

We are now in a position to rigorously define self-testing.

Self-testing

Definition 2.2. The correlations P (a, b|x, y) self-test a well-defined quantum state |ψ⟩AB if
for all |ϕ⟩A′B′ compatible with P (a, b|x, y), there exists a local isometry

ΦA′ ⊗ ΦB′ : HA′ ⊗HB′ → HAĀ ⊗HBB̄

such that

ΦA′ ⊗ ΦB′ |ϕ⟩A′B′ = |ψ⟩AB ⊗ |junk⟩ĀB̄ (2)

This means that if P (a, b|x, y) are observed on some |ϕ⟩A′B′ , then there must exist a local channel,
or isometry, through which the target state |ψ⟩AB can be extracted, along with a leftover junk state
|junk⟩ĀB̄. Here, we first note some important remarks regarding self-testing.

Remarks

1. The actual isometry to extract |ψ⟩AB from |ϕ⟩A′B′ does not need to be performed in the
laboratory; only a proof that such an isometry exists is necessary.
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2. The correlations P (a, b|x, y) are obtained by averaging the results of independent and identically
distributed (i.i.d.) rounds of measurements {Πa|x}, {Πb|y} on |ϕ⟩A′B′ . This means that the state
|ϕ⟩A′B′ and the measurement operators must be identical in each trial, such that measurement
outcomes follow the same distribution and do not depend on results from previous trials.

3. Though the definitions presented above refer to bipartite systems, self-testing can be straight-
forwardly generalized to a multipartite state by considering an isometry that acts locally on
each part of the system.

Crucially, however, we will never measure the exact value of P (a, b|x, y) due to the statistical
limitation of a finite sample size. Moreover, because of experimental noise, we might not expect our
physical state |ϕ⟩A′B′ to exactly satisfy Eq. 2. Thus, we must build some tolerance for error into our
definition of self-testing; this is known as robustness.

To do so, we use the vector norm || · || as a measure of distance,

|| |ψ⟩ || =
√
| ⟨ψ|ψ⟩ |2.

Robustness can then be incorporated into our definition of self-testing as follows:

Robust self-testing

Definition 2.3. The correlations P ′(a, b|x, y) self-test |ψ⟩AB with error δ if for any |ϕ⟩A′B′

compatible with P ′(a, b|x, y), there exists a local isometry ΦA′ ⊗ ΦB′ such that

||ΦA′ ⊗ ΦB′ |ϕ⟩A′B′ − |ψ⟩AB ⊗ |junk⟩ĀB̄ || ≤ δ

for some state |junk⟩ĀB̄.

Now that we know the formal definition of a self-test, we may wonder what types of measurements
{Πa|x}, {Πb|y} give rise to correlations P (a, b|x, y) that actually have the ability to self-test a specific
state |ψ⟩AB. In what follows, we introduce the CHSH game, a non-local game that can be employed
to robustly self-test for one singlet.

3 CHSH game

3.1 Introduction

In the CHSH game, Alice and Bob each receive a uniformly chosen bit x, y from the referee,
x, y ∼ Unif({0, 1}). Alice and Bob then reply to the referee with bits a, b ∈ {0, 1}. They win the
game if

x ∧ y = a⊕ b (3)

Here ⊕ indicates addition modulo 2 or XOR, while ∧ is a logical AND. Now, any classical strategy
has a maximal success probability of 3

4 . A proof of this is given in [Mer17], and a general overview
of how this limit appears is given in Appendix A.

In the quantum case, Alice and Bob can share some entangled state |ψ⟩AB. Depending on the
bit x Alice receives, she then performs the measurement Πa|x with result a. Similarly, Bob performs
Πb|y. Then, the probability of winning is given by

Pwin =
1

4

∑
{a,b,x,y|x∧y=a⊕b}

⟨ψ|AB Πa|x ⊗Πb|y |ψ⟩AB
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Note that this expression also holds classically with the redefinition

⟨ψ|AB Πa|x ⊗Πb|y |ψ⟩AB = ⟨Πa|x ⊗Πb|y⟩ → p(a, b|x, y),

where p(a, b|x, y) is the probability of returning a, b given inputs x, y.
We can explore this in even greater detail. If the input bits (x, y) are either (0, 1), (1, 0), or (0, 0),

then the probability of winning minus the probability of losing is

⟨Π0|x ⊗Π0|y⟩+ ⟨Π1|x ⊗Π1|y⟩ − ⟨Π0|x ⊗Π1|y⟩ − ⟨Π1|x ⊗Π0|y⟩ = ⟨(Π0|x −Π1|x)⊗ (Π0|y −Π1|y)⟩.

Similarly, if the input bits (x, y) are (1, 1), then the probability of winning minus the probability of
losing becomes −⟨(Π0|x −Π1|x)⊗ (Π0|y −Π1|y)⟩. Thus, defining

Ax = Π0|x −Π1|x, By = Π0|y −Π1|y (4)

we see that overall, Pwin − Plose =
1
4

(
⟨A0B0⟩+ ⟨A1B0⟩+ ⟨A0B1⟩ − ⟨A1B1⟩

)
where

⟨AxBy⟩ = ⟨ψ|AB AxBy |ψ⟩AB (quantum case)

=
∑

a,b∈{0,1}

(−1)a⊕bp(a, b|x, y) (classical case).

So, as Pwin ≤ 3
4 (Pwin−Plose ≤ 1

2) classically, then the following inequality must hold for any classical
correlations:

CHSH Inequality

⟨A0B0⟩+ ⟨A1B0⟩+ ⟨A0B1⟩ − ⟨A1B1⟩ ≤ 2 (5)

Known as the CHSH inequality, Eq. 5 was first derived by Clauser, Horne, Shimony, and Holt in
[CHSH69].

Now, it turns out that if Alice and Bob share a maximally entangled state of two qubits

|ψ⟩AB =
∣∣ϕ+〉AB =

|00⟩AB + |11⟩AB√
2

,

which we refer to from now on as a singlet, and conduct the measurements

A0 = XA A1 = ZA B0 =
XB + ZB

√
2

B1 =
XB − ZB

√
2

whereX,Z are Pauli operators, then they can achieve Pwin = cos(π/8)2 ≈ 0.85. This is the maximum
success probability for a quantum strategy, thus maximally violating the CHSH inequality (Eq. 5)
with value CHSH = 2

√
2 > 2. We now show that observing a maximal violation of CHSH = 2

√
2,

with some tolerance for error, actually self-tests for the singlet state |ϕ+⟩AB = |00⟩+|11⟩√
2

.

3.2 Robust self-testing of one singlet

Here, we follow the argument presented in [MYS12] to show that the CHSH game with maximal
success probability (violating Eq. 5 with CHSH = 2

√
2) robustly self-tests for a singlet |ϕ+⟩. The

ideal case was proven in [MY04].
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First, we will present Ref. [MYS12]’s main theorem. Then, we will go over a sketch of the proof
and make some remarks about their result. Here, a subscript A (B) will denote Alice’s (Bob’s) sub-
system, with primes indicating physical subsystems. Primed operators indicate physical observables,
while unprimed X,Z refer to Pauli operators. For example, due to noise and extra experimental
degrees of freedom, a physical X′ may not implement a perfect Pauli X. We wish to self-test a
physical state |ϕ⟩A′B′ as a singlet |ϕ+⟩AB = |00⟩+|11⟩√

2
.

CHSH bound is a robust self-test of the singlet

Theorem 3.1. Suppose that the observables A′
0, A

′
1, B

′
0 and B′

1 with eigenvalues ±1 act on
a state |ϕ⟩A′B′ such that

⟨ϕ|
(
A′

0B
′
0 +A′

1B
′
0 +A′

0B
′
1 −A′

1B
′
1

)
|ϕ⟩ ≥ 2

√
2− ϵ (6)

Then, there exists local observables {X′
A′ ,Z′

A′} (functions of A′
i) and {X′

B′ ,Z′
B′} (functions of

B′
i) with eigenvalues ±1 and a local isometry ΦA ⊗ ΦB such that

||ΦA ⊗ ΦB(M
′
A′N′

B′ |ϕ⟩)− (MANB
∣∣ϕ+〉AB)⊗ |junk⟩ || ≤ δ (7)

for M,N ∈ {1,X,Z} where δ = O(
√
ϵ).

Proof Sketch To prove Eq. 7 from Eq. 6, we can first explicitly construct {X′
A′ ,Z′

A′} and
{X′

B′ ,Z′
B′} from A′

0, A
′
1, B

′
0 and B′

1. This is done by defining

X′
A′ = A′

0 Z′
A′ = A′

1 X′
B′ =

B′
0 +B′

1

|B′
0 +B′

1|
Z′
B′ =

B′
0 −B′

1

|B′
0 −B′

1|
. (8)

Here, |M | =
√
M2, where zero eigenvalues of M are taken to be 1 in M/|M |. Then, the following

bounds can be shown using Eq. 6 along with the Cauchy-Schwartz and triangle inequalities,

||(X′
A′Z′

A′ + Z′
A′X′

A′) |ϕ⟩A′B′ || ≤ ϵ1, ||(X′
B′Z′

B′ + Z′
B′X′

B′) |ϕ⟩A′B′ || ≤ ϵ1

||(X′
A′ −X′

B′) |ϕ⟩A′B′ || ≤ ϵ2, ||(Z′
A′ − Z′

B′) |ϕ⟩A′B′ || ≤ ϵ2,
(9)

where ϵ1 = O(
√
ϵ) and ϵ2 = O(ϵ1/4). Moreover, the explicit form of the isometry ΦA ⊗ ΦB can

be constructed as in Fig. 1. Note that this takes the form of a partial swap gate, which swaps
the physical state |ϕ⟩A′B′ onto two ancilla qubits. To analyze this isometry, we can consider when
M = N = 1. Then, we have

ΦA ⊗ ΦB(|ϕ⟩A′B′) =
1

4

[
(1 + Z′

A′)(1 + Z′
B′) |00⟩AB +X′

B′(1 + Z′
A′)(1− Z′

B′) |01⟩AB

+X′
A′(1− Z′

A′)(1 + Z′
B′) |10⟩AB +X′

A′X′
B′(1− Z′

A′)(1− Z′
B′) |11⟩AB

]
|ϕ⟩A′B′ .

(10)

Let’s look at the ideal case, in which ϵ1, ϵ2 = 0 in Eq. 9. Then, Z′
A′ |ϕ⟩A′B′ = Z′

B′ |ϕ⟩A′B′ and
X′

A′ |ϕ⟩A′B′ = X′
B′ |ϕ⟩A′B′ . So, (1 ± Z′

A′)(1 ∓ Z′
B′) |ϕ⟩A′B′ = 0, and the coefficients of |01⟩AB and

|10⟩AB go to zero in Eq. 10. Finally, the term in front of |11⟩AB can be simplified to

X′
A′X′

B′(1− Z′
A′)(1− Z′

B′) |ϕ⟩A′B′ = (1 + Z′
A′)(1 + Z′

B′)X′
A′X′

B′ |ϕ⟩A′B′

= (1 + Z′
A′)(1 + Z′

B′) |ϕ⟩A′B′

5
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Figure 1: Local isometry ΦA ⊗ ΦB, where M,N ∈ {1,X,Z}.

where we have used the ideal anticommutation relations from Eq. 9, as well as X′
A′X′

B′ |ϕ⟩A′B′ =

X′2
A′ |ϕ⟩A′B′ = |ϕ⟩A′B′ . From here, we can see that Eq. 10 becomes

ΦA ⊗ ΦB(|ϕ⟩A′B′) =
|00⟩AB + |11⟩AB√

2
⊗ 1

2
√
2
(1 + Z′

A′)(1 + Z′
B′) |ϕ⟩A′B′

where we can identify 1
2
√
2
(1 + Z′

A′)(1 + Z′
B′) |ϕ⟩A′B′ ≡ |junk⟩. This explicitly verifies that in the

ideal case, the isometry constructed in Fig. 1 perfectly takes our physical state |ϕ⟩ to the singlet
|ϕ+⟩, up to some extra junk state.

Finally, the error δ ∼ ϵ1 + ϵ2 = O(
√
ϵ) in Eq. 7 can be derived using the action of this specific

isometry and the bounds in Eq. 9; this derivation invokes the triangle inequality and the unitarity
and Hermiticity of the operators.

Remarks

1. A crucial part of this result (Eq. 9) relies on the fact that Alice and Bob each measure anti-
commuting operators: X′

A′Z′
A′+Z′

A′X′
A′ ≈ 0, X′

B′Z′
B′+Z′

B′X′
B′ ≈ 0. Indeed, as Pauli operators

anti-commute, we see that this holds in the example where they measure ideal Pauli operators.

2. In Eq. 7, for M,N = 1, we explicitly see that the isometry takes |ϕ⟩A′B′ into |ϕ+⟩AB ⊗ |junk⟩.
However, as Eq. 7 also holds for Pauli M,N, this bound implies that any measurements
which almost maximally violate the CHSH inequality must also approximate Pauli matrices.
This result—that any approximately optimal stategy must have the same structure as an ideal
strategy—is known as rigidity.

4 Conclusion
Here, we have given a concise introduction into the self-testing of entangled states, giving the

CHSH game as an example of a robust self-test for a singlet state. Other non-local games, such as the
Mermin-Peres magic square [Mer90] [Per90], have also been shown to have the capacity to self-test
certain quantum states. For example, [WBMS16] showed that the magic square game could robustly
self-test for two singlets. Moreover, self-tests for multiple entangled pairs can also be constructed by
repeating the CHSH or magic square games multiple times—either in series over multiple rounds,
or in parallel in one round. For instance, [RUV13] showed that a serially repeated CHSH game was
rigid, while [CN16] proved the rigidity of a parallel-repeated magic square game.

Open directions of research include the development of self-testing strategies for d dimensional
systems that do not simply extend from lower-dimensional cases, as touched upon in [SAT+17],
as well as the exploration of self-testing for non- i.i.d. rounds of measurement, as examined by
[BRS+21].
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A Classical CHSH
Suppose Alice and Bob send back ax, by, dependent on the bits x, y that they receive. The

possiblities for x, y and ax, by are listed in Table 1.

x y x ∧ y =ax ⊕ by
0 0 0 = a0 ⊕ b0
0 1 0 = a0 ⊕ b1
1 0 0 = a1 ⊕ b0
1 1 1 = a1 ⊕ b1

⊕ = 1 = 0

Table 1: Possible combinations of ax, by for given x, y in the CHSH game.

Because ⊕ is commutative and ∀ c ∈ {0, 1}, c⊕ c = 0, the fourth column of Table 1 must add to
0 modulo 2. However, the third column adds to 1 modulo 2. Thus, it is impossible for any strategy
of ax, by to satisfy all four relations in Table 1 at once: a win cannot be guaranteed. However, three
out of the four can be satisfied simply by choosing ax, by = 0 for all x, y, for example, leading to a
success rate of 3

4 . This turns out to be the maximum success probability for any classical strategy.
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