
CS 231 Quantum Computation and Quantum Complexity1

Scribe Notes

Anurag Anshu

August 16, 2022

1This is the collection of scribe notes for CS 231 Quantum Computation and Quantum Complexity taught
at Harvard in Spring 2022 by Anurag Anshu. A significant part of the course material is adapted from a
quantum computing course co-taught with Umesh Vazirani at University of California, Berkeley in Fall 2021.

Contents

1 6
1.1 The Quantum Formalism . 6

1.1.1 Quantum Theory . 7
1.1.2 Multiple quantum systems . 8
1.1.3 Looking ahead . 9

2 10
2.1 Announcements . 10

2.1.1 Office hours . 10
2.1.2 Homework 1 . 10

2.2 Roadmap . 10
2.3 Defining a qubit . 11

2.3.1 First candidate definition . 11
2.3.2 Second candidate definition . 11
2.3.3 Third candidate definition . 13

3 16
3.1 Quantum key Distirbution . 16

4 18
4.1 Recap . 18
4.2 Quantum Key Distribution . 19
4.3 CHSH Test . 20

5 22
5.1 Outline . 22
5.2 Models of Quantum Computation . 22

5.2.1 Quantum circuit model . 22
5.2.2 Performing a computation . 23
5.2.3 Interpreting the output . 24

5.3 What can we do with quantum computation? . 24
5.3.1 Search problem . 24
5.3.2 Oracle model . 25
5.3.3 Classical interlude . 25
5.3.4 Quantum version . 25

1

5.3.5 Grover’s search algorithm . 26
5.4 Next Class . 26

6 27
6.1 Grover’s Algorithm . 27

6.1.1 The Algorithm . 27
6.1.2 Analysis . 28
6.1.3 Optimality . 30

7 33
7.1 Quantum Fourier transform over {0, 1}n . 33
7.2 Simon’s Problem . 33
7.3 Forrelation . 35

8 36
8.1 Introduction to Phase Estimation . 36
8.2 Informal Definition . 36
8.3 An Example . 36
8.4 Importance . 37
8.5 Phase Estimation for Search . 37

9 39
9.1 Recap of Quantum Phase Estimation . 39
9.2 Quantum Fourier Transform . 39
9.3 Shor’s algorithm . 41
9.4 Quantum Fourier Transform Revisited . 43

10 45
10.1 Motivation . 45
10.2 Random Walk over a Graph . 45
10.3 Quantum Walk . 47

11 49
11.1 Revisiting Quantum Walks . 49
11.2 Collision Problem . 51
11.3 Hamiltonian Complexity . 52

12 54
12.0 Classical Proof Systems and Quantum Proofs . 54

12.0.1 NP (Non-deterministic polynomial time) . 54
12.0.2 MA (Merlin-Arthur) . 55
12.0.3 QMA (Quantum Merlin-Arthur) . 55

12.1 Quantum Cook-Levin Theorem . 56
12.2 Feynman-Kitaev Clock Construction . 58

2

13 59
13.1 Clock Construction . 59

13.1.1 History states . 59
13.1.2 Clock Hamiltonian . 60

13.2 Applications . 60
13.3 Construction . 61

13.3.1 Hprop . 61
13.3.2 Hinit . 63
13.3.3 Hout . 63

13.4 Proof Sketch . 64

14 65
14.1 Final Analysis of Clock Construction . 65

14.1.1 Review . 65
14.1.2 Prove Completeness . 66
14.1.3 Prove Soundness . 66

14.2 Marriott Watrous Protocol . 68
14.2.1 Amplification of QMA . 68

14.3 Marriott-Watrous Protocol . 69

15 70
15.1 Lecture Plan . 70
15.2 Marriot-Watrous Protocol . 70

15.2.1 Overview . 70
15.2.2 The Verifier Circuit . 70
15.2.3 The Marriott-Watrous Theorem . 72
15.2.4 Specifying the Protocol . 72
15.2.5 Understanding the Protocol . 73
15.2.6 Conclusion . 77

15.3 Hamiltonian Simulation . 77
15.3.1 Overview . 77
15.3.2 Applications . 77
15.3.3 Goal . 77
15.3.4 Method 1: Trotter Method . 78
15.3.5 Method 2: Phase Estimation with Quantum Walks 78

16 79
16.1 Today . 79

16.1.1 Recap . 79
16.2 Trotter method . 79
16.3 Quantum Walk . 81
16.4 Linear Systems . 82

16.4.1 Quantum Linear Systems (Harrow, Hassidim, and Lloyd) 82

3

17 84
17.1 Recap: Hamiltonian Simulation, Quantum Linear Systems 84

17.1.1 Hamiltonian Simulation . 84
17.1.2 Quantum Linear Systems . 84

17.2 Quantum Linear Systems . 85
17.2.1 QLS Solution Theorem . 85
17.2.2 Rewriting the QLS Problem . 85
17.2.3 Harrow-Hassidim-Lloyd Algorithm . 86
17.2.4 HHL Algorithm Analysis . 87

17.3 Quantum Walks . 88
17.3.1 Recap . 88
17.3.2 Remaining Proof in Quantum Walks . 89

18 91
18.1 Predicting Properties in a Quantum State . 91
18.2 How can we predict properties of ρ efficiently? . 91

18.2.1 Naive Case . 91
18.2.2 Classical Case . 92

18.3 Shadow Tomography . 92
18.3.1 State Design . 93

19 94
19.1 Hamiltonian simulation using quantum walks . 94

19.1.1 Setup . 94
19.1.2 Recall: Quantum Walks . 95
19.1.3 Hamiltonian Simulation: High Level . 95
19.1.4 Hamiltonian Simulation: Details . 96

20 99
20.1 Preliminary: Chebyshev polynomials . 99
20.2 Hamiltonian simulation . 100

20.2.1 Finishing the proof for Hamiltonian simulation 100
20.3 Quantum signal processing . 102

20.3.1 Applications of QSP . 103
20.3.2 Formal description of QSP . 103

21 106
21.1 Pauli Matrices Review . 106

21.1.1 Concurrent Measurement . 107
21.2 Error Correction Codes . 107
21.3 Quantum Error Correcting Codes . 108

21.3.1 The Quantum Rep Code . 108

4

22 110
22.1 Recap . 110
22.2 CSS Codes . 112
22.3 Logical Operators . 113
22.4 Local Indistinguishability . 113

23 114
23.1 Local Hamiltonian Problem . 114
23.2 Quantum PCP Conjecture . 114
23.3 Description Complexity . 115
23.4 Connecting Description Complexity to QPCP . 116

24 119
24.1 Qisket Basics . 119

24.1.1 Qisket Transpiler . 119
24.1.2 Qisket Tutorials . 119

24.2 Hybrid Classical-Quantum Algorithms . 120
24.2.1 Adiabatic Simulation . 120
24.2.2 Variational Circuits . 120

25 122
25.1 Quantum Error Correcting and Toric Codes . 122

25.1.1 Main Takeaways from this class . 122
25.1.2 Agenda . 122
25.1.3 Recap: Description Complexity . 122
25.1.4 Recap on undetectable errors . 123
25.1.5 Hard Hamiltonians . 123
25.1.6 Matrix Product States . 124
25.1.7 Back to code Hamiltonians . 126
25.1.8 Toric Code . 127

5

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 1

January 26, 2022 Scribe: Benji Kan

1.1 The Quantum Formalism

Welcome to CS 231! Anurag Anshu is the instructor for this course, and the teaching fellows are
Chi-Ning Chou and Prayaag Venkat.

Course Logistics

• Project topics. There will be two options for final projects: a) come up with a quantum
analog to a classical idea in CS or b) write a summary report on some interesting topics in
quantum computing. Projects are tentatively individual but may be completed in pairs for
more advanced subjects.

• Office Hours. Anurag’s office hours are Wednesdays 11:30-12:30, and the TFs will send out
a survey to decide times on Monday or Tuesday.

• Homeworks. Homeworks are due at 11:59pm on Tuesdays, and the highest n − 3 out of
all n assignments (n ≈ 12 ± 1) will be counted for the final grade. Moreover, each student
has a budget of 10 late days, of which a maximum of 2 late days may be used on any one
assignment.

• Homework 0 should be submitted on Gradescope by Thursday night, and no late days may
be used for this.

• Ed will be the main platform for announcements.

6

Today, we will discuss quantum theory, multiple quantum systems.

1.1.1 Quantum Theory

We begin with a meme about the double-slit experiment, and see a demonstration of interference
with polarizing filters.

A photon can be viewed as a qubit and can be represented as a vector in the 2D complex vector
space with axes |0⟩ , |1⟩.

The first polarizer is oriented to measure photons in the {|0⟩ , |1⟩} basis and blocks photons in
the |1⟩ state, only allowing photons in the |0⟩ state to pass through. On the other hand, the third
polarizer blocks photons in the |0⟩ state, only allowing photons in the |1⟩ state to pass through.
The second polarizer is rotated 45◦ relative to the other two, measuring in the {|+⟩ , |−⟩} basis
where |+⟩ = 1√

2
|0⟩ + 1√

2
|1⟩. So, without the second polarizer, no light passes through the two-

polarizer system. However, inserting the second polarizer between the other two projects the state
of intermediate photons onto |+⟩, which allows some light to pass through the third polarizer.

From this demo, we conclude that measurement changes the state.

7

Components of quantum theory

We describe some essential components of quantum formalism for quantum computation.

• Quantum states: positive semi-definite matrix with trace one (also called density matrix).

Rank one matrices are pure quantum states (meaning complete knowledge of system). We
can write any state in a density matrix form as

ρ = p1 |ψ1⟩ ⟨ψ1|+ p2 |ψ2⟩ ⟨ψ2|+ . . . (1.1)

PSD means that p1, p2, · · · ≥ 0, and trace one ensures p1 + p2 + · · · = 1.
A rank one matrix occurs when p1 = 1, p2 = p3 = · · · = 0. Otherwise if the matrix is not
rank one, it is in a mixed state. The maximally mixed state for a qubit occurs when the
density matrix is 1

2 |0⟩ ⟨0|+
1
2 |1⟩ ⟨1| =

I
2 .

• Unitary transformation: a probability preserving, reversible, transformation (e.g. in a quan-
tum circuit).

These can essentially be viewed as a change of basis. An important example is theHadamard

transform

(
1√
2

1√
2

1√
2
− 1√

2

)
, which takes {|0⟩ , |1⟩} → {|+⟩ , |−⟩}, as in the second polarizer in

our earlier demo.

• Measurement : observation on the system in a chosen orthonormal basis.

From a quantum information perspective, measurements change the description of the system
to gain information about it. For example, the second polarizer in the demo takes |0⟩ ⟨0| →
1
2 |+⟩ ⟨+|+

1
2 |−⟩ ⟨−|. Thus, the act of measuring also provides an outcome.

1.1.2 Multiple quantum systems

To describe a system of two qubits, we set up the joint vector space HA ⊗HB, which is a tensor
product of the individual vector spaces of each atom. (Following classical notation, we have used
registers for the 1st (A) and 2nd (B) qubits to avoid ambiguity.) So, if the initial basis vectors of
each atom are {|0⟩ , |1⟩}, then one of the four new basis vectors for the joint space is

(
1
0

)
A

⊗
(
1
0

)
B

=

1
0
0
0

 (1.2)

the other three joint basis vectors are defined in the natural way.
The allowed states include pure states such as |0⟩A⊗ |0⟩B , |0⟩A⊗ |1⟩B , |1⟩A⊗ |0⟩B , |1⟩A⊗ |1⟩B.

They also include non-pure entangled superpositions of these states such as 1√
2
|0⟩⊗|0⟩+ 1√

2
|1⟩⊗|1⟩.

We will see that this entanglement is a source of quantum advantage.

8

CNOT gate

We consider a simple quantum circuit operation. Let U be the unitary for a CNOT (controlled
NOT) gate. The CNOT gate is a two qubit gate that acts as follows:

U |0⟩ |0⟩ = |0⟩ |0⟩
U |0⟩ |1⟩ = |0⟩ |1⟩
U |1⟩ |0⟩ = |1⟩ |1⟩
U |1⟩ |1⟩ = |1⟩ |0⟩

We observe that applying the CNOT to the |+⟩A |0⟩B state generates entanglement :

U |+⟩A |0⟩B = U

(
1√
2
|0⟩A +

1√
2
|1⟩A

)
|0⟩B = U

1√
2
|0⟩A |0⟩B + U

1√
2
|1⟩A |0⟩B =

1√
2
|0⟩A |0⟩B +

1√
2
|1⟩A |1⟩B

We note that amplitudes are related to probabilities, but may be negative or even complex.

1.1.3 Looking ahead

• Some topics we will cover in the next few weeks include: quantum gates, more entanglement,
quantum algorithms, quantum NP, non-locality, cryptography

• More importantly, we will learn about some far-reaching phenomena in the field.

– Static vs dynamic: favorable translations between dynamic processes and static ob-
jects. In this class, we will see examples such as the Quantum Cook-Levin theorem,
Hamiltonian simulation. Classical analogues include the Cook-Levin Theorem—which
translates a classical circuit (a dynamic object) to the constraint satisfaction problem (a
static object)—and approximating permanents with random walks.

– Discrete vs continuous: the tension between classically natural discrete phenomena
and the inherently continuous components of quantum theory. In this class, we will
discuss quantum gates, Pauli matrices, Jordan’s lemma. Jordan’s lemma will lead to
quantum walks, quantum signal processing, tests of entanglement, and rewinding in
cryptography.

9

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 2

January 28, 2022 Scribe: Cole French

2.1 Announcements

2.1.1 Office hours

All office hours will be in SEC 3.317. See Ed for updates post-publication.

Anurag
Wednesdays 11:30am–12:30pm

Chi-Ning
Mondays 4–5pm
Fridays 11:30am–12pm

Prayaag
Tuesdays 4–5pm

For Chi-Ning’s first Monday office hours on January 31, he will lead a special section covering
math and physics background for the course. See Ed for details.

2.1.2 Homework 1

Homework 1 will be released on February 2 and due on February 8.

2.2 Roadmap

Today, our primary objective is to understand qubits.

• How do we define a qubit?

• What are gate sets?

• How is entanglement useful?

• What are Pauli operators?

At the end, we will review Homework 0.

10

2.3 Defining a qubit

A qubit . . . is the basic unit of quantum
information.

Wikipedia

As all good monologues do, we begin with a vague quote from a familiar online source. We can
ask ourselves, Is this a good definition? The answer is, No, because we have simply substituted one
unknown term, “qubit,” for another, “quantum information.”

A good definition is useful and makes sense in a realistic situation. In our quest for a good
definition, we will use an adversarial framework: Two people, call them Anurag and Boaz, meet up
for coffee. Boaz remarks that he has come into possession of a qubit. Of course, Anurag believes
him, but just to be sure: What questions can Anurag ask to convince himself Boaz’
mystery object is actually a qubit?

2.3.1 First candidate definition

A qubit is a 2D complex vector space.

If this is a qubit, then Anurag would like proof that Boaz has such a vector space. However,
he cannot request the entire vector space, because it contains infinitely many vectors. Therefore,
Anurag must request some finite subset of vectors {|ψn⟩}. But Boaz could just have these lying
around in his secret warehouse! In addition to possessing a physical object, Boaz must evidence
some “quantum power”—an ability to manipulate the objects quantum mechanically.

2.3.2 Second candidate definition

A qubit is a 2D complex vector space and a set of unitaries acting on the vectors in the space.

Now, Anurag would like to verify that Boaz can manipulate quantum state. But which unitaries
should he ask for? Note that there are infinitely many of them; any unitary U satisfies

U †U = 1

detU = 1,

from which we can determine that

U =

(
a+ bi c+ di
−c+ di a− bi

)
for some a, b, c, d ∈ R. Thus, any vector in R4 describes a unitary transformation.

Fortunately, Anurag does not need every unitary; he can ask Boaz for a gate set, a collection of
gates that can be applied in some sequence to approximate any unitary. We will consider the gate
set {H,T} that consists of the Hadamard gate introduced last lecture and the T gate.

11

Approximation

Before we discuss the Hadamard and T gates specifically, we should clarify what it
means to approximate a unitary U . We can quantify such an approximation using a
norm.

For example, the Frobenius norm is a norm that can be thought of as an extension
of the L2 norm to matrices. While the L2 norm measures the sum of the squares of
the components of a vector, the Frobenius norm measures the sum of the squares of the
diagonal entries of a matrix. Thus, for some matrix M , it is given by

∥M∥F =
√
Tr(M †M).

This means we can measure the Euclidean distance between two matrices just as we
do between two vectors: For some approximating sequence of gates HTHT . . ., our
approximation error is ∥U −HTHT . . .∥F .

Note that the Frobenius norm is just one quantification of approximation. It is
usually convenient, but nothing stops us from choosing other norms.

Now, let us return to our gate set:

H =
1√
2

(
1 1
1 −1

)
T =

(
1 0

0 e iπ/4

)
.

Recall that the Hadamard gate takes {|0⟩ , |1⟩} to {|+⟩ , |−⟩}, creating a quantum state that
has an equal chance of being measured as either |0⟩ or |1⟩ in the standard basis. We can visualize
this on the Bloch sphere, which we describe later in these notes.

Hadamard→

Notice how the resulting states are perpendicular to the Z-axis; this exhibits the equal probability
of being measured as |0⟩ or |1⟩.

Meanwhile, the T gate rotates a quantum state by π/4 radians around the Z-axis of the Bloch
sphere.

12

T→

Back to the task at hand, how can Anurag confirm Boaz has a gate set? One method is that he
can choose one of two quantum states, |0⟩ or |+⟩, with equal probability, and ask Boaz to transform
it with the Hadamard gate. H |0⟩ = |+⟩ and H |+⟩ = |0⟩. Note that they would have to repeat this
interaction a number of times to improve Anurag’s certainty that Boaz has a Hadamard gate. For
example, with just one interaction, Boaz could return either of the two quantum states arbitrarily
for a 1/2 chance of guessing correctly.

OK, so this seems like a good definition of a qubit. Are there any others?

2.3.3 Third candidate definition

A qubit is a 2D complex vector space and the Pauli X and Z operators.

Compared to the previous definition, we have substituted our two matrices forming a gate set,
H and T , for two new matrices, X and Z. Therefore, we hope X and Z exhibit some kind of
“universality,” so that they are just as useful.

In fact, they are even more useful. The Pauli matrices are

X =

(
0 1
1 0

)
Z =

(
1 0
0 −1

)
Y = iXZ =

(
0 −i
i 0

)
,

and they have some nice properties: They. . .

• . . .are Hermitian and unitary, each with two eigenvalues, 1 and −1. The corresponding
normalized eigenvectors are

λ = 1 λ = −1

X 1√
2
(11)

1√
2

(
1
−1

)
Z (10) (01)

Y 1√
2
(1i)

1√
2

(
1
−i
)
,

and each of them forms half of an axis of the Bloch sphere.

13

• . . .anticommute, so XZ = −ZX, for example.

• . . .can be put into a linear combination with one another and the identity matrix to equal
any (2D) matrix.

This last property includes any quantum state and any unitary, so this is a great definition of a
qubit. For example, here is our gate set written as linear combinations of the Pauli matrices:

H =
1√
2
(X + Z)

T =
1

2

(
1−
√
i
)
Z +

1

2

(
1 +
√
i
)
1.

Uncertainty principle

We can use the Pauli matrices to demonstrate a fundamental property of quantum mechanical
systems, the uncertainty principle, which limits the accuracy of measurements of a system. For
motivation, consider an ensemble of particles that we prepare in state |Ψ⟩. Suppose our preparation
process is so consistent, that each time we prepare a particle and measure its position, we get nearly
identical results. This means the variance in the position,

σ2x =
〈
x2
〉
− ⟨x⟩2 ,

is incredibly small.
However, Heisenberg’s uncertainty principle asserts that

σxσp ≥
ℏ
2
,

where ℏ is a constant.1 That is, as the particle’s variance in position vanishes, its variance in
momentum grows larger. This means there is some inherent, physical limit on how accurately we
can prepare the particle’s position and momentum!

Heisenberg’s uncertainty principle is one instance of the general uncertainty principle for two
operators A,B:

σAσB ≥
1

2i
⟨[A,B]⟩ ,

1The reduced Planck constant

14

where [A,B] is called the commutator and is simply defined as AB−BA. (It is called this, because
it equals 0 exactly when A and B commute.) Now, remember that one of the properties of the
Pauli matrices is that they anticommute;

[X,Z] = XZ − ZX
= 2XZ = −2ZX.

In particular, this value is nonzero, so there is an uncertainty principle for the Pauli matrices that
you (yes, you!) can compute with the above formula.

15

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 3

August 16, 2022 Scribe: Seung Hwan An

3.1 Quantum key Distirbution

Quantum Key Distribution : Alice and Bob want to share a secret shared key (a random
string). The key is used to perform one time pad. Eve wants to learn the key (or any
information regarding it). Alice and Bob are allowed to abort the protocol if they find that
Eve has tampered with the message. Conditioned on no-abort, a secret key must be shared.

Suppose the shared quantum secret bit that Alice and Bob wants to share is

1

2
|0⟩⟨0|A ⊗ |0⟩⟨0|B +

1

2
|1⟩⟨1|A ⊗ |1⟩⟨1|B

This is the same as sharing a secret bit that has probability 1/2 of being 0 and 1/2 of being
1.

No cloning theorem Alice and Bob can’t just share the secret key using classical realm, due to
copying attack by Eve, who can copy each message from Alice and essentially simulate Bob.
In the quantum world, Alice and Bob can, however, share the secret key, due to:

Theorem 3.1.1 (No Cloning Theorem). There is no unitary/valid quantum transformation
U such that

U |0⟩A ⊗ |0⟩B = |0⟩A ⊗ |0⟩B U |+⟩A ⊗ |0⟩B = U |+⟩A ⊗ |+⟩B

Proof. Unitary transformation conserves inner product, and are linear. If such U existed,
then

1/
√
2 = ⟨00|+0⟩ = ⟨00|U †U |+0⟩ = ⟨00|++⟩ = 1/2

a contradiction.

BB ’84 Quantum Key Distribution Protocol This protocol was introduced by Charles Ben-
nett and Gilles Brassard [BB84]. This protocol assumes a public channel over which Alice
and Bob can announce classical messages. The following steps are run in parallel n times.

Step 1. Alice generates 2 random bits (b, a), where b is the basis and a is the state.

Step 2. Alice sends to Bob the following state in a register M according to this table:

b\a 0 1

0 |ψ00⟩ = |0⟩ |ψ10⟩ = |1⟩
1 |ψ01⟩ = |+⟩ |ψ11⟩ = |−⟩

16

The current quantum state in the protocol is represented as:

1

4

1∑
a,b=0

|a⟩⟨a| ⊗ |b⟩⟨b| ⊗ |ψab⟩⟨ψab|

To get the state that Eve observes, take the partial trace to get:

1

4

1∑
a,b=0

|ψab⟩⟨ψab| =
1

4

(
|0⟩⟨0|+ |1⟩⟨1|+ |+⟩⟨+|+ |−⟩⟨−|

)
=

1

2

(
|0⟩⟨0|+ |1⟩⟨1|

)
=
1M

2
·

Step 3. Bob generates another random bit: b′, and then measures M in:

• {|0⟩ , |1⟩} basis if b′ = 0.

• {|+⟩ , |−⟩} basis if b′ = 1.

If b = b′, then Bob’s measurement outcome would be a. If b ̸= b′, then Bob’s measure-
ment outcome would be a random bit. Denote the result of measurement as a′.

Step 4. Alice and Bob announce b and b′.

• If b = b′, then we are done.

• If b ̸= b′, Bob rejects the key.

Step 5. Alice takes a small random subset S ⊆ [n] and announce it to Bob. They both check
that ai = a′i for all i ∈ S by announcing these bits.

Analysis: First, suppose that Eve has not interfered with the communication between Alice
and Bob. Then, Alice and Bob shares n keys, each of which with probability 1/2 is accepted
or rejected. For the keys that are accepted and unannounced at Step 5, Alice has now
successfully shared the secret key ai’s to Bob.

Secondly, assume for now the adversary Eve applies some unknown non-identity unitary
transformation U on each message qubit. Assume a = 0. Then, if b = b′ = 0, Bob would
measure U |0⟩ in {|0⟩ , |1⟩} basis, and therefore would get a′ = 1 with probability | ⟨1|U |0⟩ |2,
which is non-zero. If b = b′ = 1, Bob would measure U |+⟩ in {|+⟩ , |−⟩} basis, and therefore
would get a′ = 1 with probability | ⟨−|U |+⟩ |2, which is also non-zero. Therefore, for every
i ∈ S, there is a non-zero probability p that ai ̸= a′i. Since the unitary transformation is done
globally, while the random bits chosen by Bob and Alice are independent of each other, Bob
is able to detect the presence of Eve with probability p|S|.

In the case where Eve applies an arbitrary operation, instead of a unitary transformation
on each qubit, a more involved analysis involving quantum De Finetti’s theorem is used to
reduce this to the above case.

17

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 4

August 16, 2022 Scribe: Matthew Nazari

4.1 Recap

Let us clarify the difference between pure and mixed states. Say that there are some photons in a
box. We know beforehand each photon is in the state

|+⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ .

If we draw a photon |ψ⟩ from this box and measure in the {|0⟩ , |1⟩} basis, we will observe the state
|0⟩ with | ⟨0|ψ⟩ |2 = 50% probability and the state |1⟩ with | ⟨1|ψ⟩ |2 = 50% probability. This is
because we know for certain |ψ⟩ = |+⟩ and thus in a maximally entangled superposition between
the states |0⟩ and |1⟩.

Compare this to a different situation where 1/3 of the photons in that box are in the state
|−⟩ and 2/3 are in the state |+⟩. Suddenly, according to classical probability, we can no longer be
certain of the state |ψ⟩ we draw from the box. The state |ψ⟩ is a random variable in the classic
sense, which is a mixed state in the quantum sense.

Mixed state: A (classically) probabalistic ensemble of pure states {|ψi⟩}, commonly represented
in density matrix notation by a convex combination the pure states:

ρ =
∑
i

pi |ψi⟩ ⟨ψi| where
∑
i

pi = 1.

This representation makes it convinient to calculate probabilities. Consider a box {(|ψi⟩ , pi)}
where pi is the proportion or probability of drawing the state |ψi⟩ (each state belonding to the
D-dimensional Hilbert space with basis {|1⟩ , . . . , |D⟩}). We represent a state drawn from this box
with the density matrix ρ. The probability of observing, say, |3⟩ is then∑

i

pi| ⟨ψi|3⟩ |2 = ⟨3|ρ|3⟩ = Tr(|3⟩⟨3| ρ).

This is analogous to taking an expectation from classical probability theory.
What if, instead, we are interested in the probability of not just state |3⟩, but one of the states

|1⟩, |2⟩, and |3⟩. This probability is given by

3∑
i=1

Tr(|i⟩ ⟨i| ρ) = Tr

(
3∑
i=1

|i⟩ ⟨i| ρ

)
.

Here,
∑3

i=1 |i⟩ ⟨i| is the sum of three rank 1 matrices. The value Tr(Πρ) calculates the probability
of measuring the outcome that we encoded into Π. We call the operator Π a projector because
it projects ρ onto the subspace spanned by {|1⟩ , |2⟩ , |3⟩}. This kind of measurement is called a
projective measurement.

18

Projective measurement: A set of measurement operators {Πi} such satisfy the completeness
equation ∑

i

Π†
iΠi = I.

To calculate the probability of measuring an outcome i from a mixed state ρ, you simply
calculate

Tr(Πiρ).

Note that we can assign real values mi to each outcome Πi. This object M =
∑

imiΠi is a
random variable in the classical sense, and an observable in the quantum sense. The “expected
value” of the observable M is simply Tr(Mρ).

4.2 Quantum Key Distribution

Suppose Alice and Bob want to share a joint random bit that nobody else knows. The goal,
mathematically, is to share the state

1

2
|0⟩ ⟨0|A ⊗ |0⟩ ⟨0|B +

1

2
|1⟩ ⟨1|A ⊗ |1⟩ ⟨1|B .

This is quantum notation for a perfectly correlated random bit shared between Bob and Alice (two
individual bits, but both sharing the same bit value 0 or 1). Consider the following protocol that
achieves this goal:

Protocol 1

1. Alice prepares two qubits

1√
2
|0⟩A ⊗ |0⟩B +

1√
2
|1⟩A ⊗ |1⟩B .

2. Alice sends the second qubit B to Bob.

3. Alice and Bob both measure in a basis that they agree on beforehand, like {|0⟩ , |1⟩}.

The object Alice prepared is known as an EPR pair.

EPR pair: Named after Einstein, Podolsky and Rosen, an EPR pair refers to maximally entan-
gled quantum states of two cubits between the |0⟩ and |1⟩ basis states:

1√
2
|0⟩A ⊗ |0⟩B +

1√
2
|1⟩A ⊗ |1⟩B ,

1√
2
|0⟩A ⊗ |0⟩B −

1√
2
|1⟩A ⊗ |1⟩B ,

1√
2
|0⟩A ⊗ |1⟩B +

1√
2
|1⟩A ⊗ |0⟩B ,

1√
2
|0⟩A ⊗ |1⟩B −

1√
2
|1⟩A ⊗ |0⟩B .

While yes this protocol would work, it has a major flaw: consider if there was a malicious agent,
call her Eve, attempting to intercept communication between Alice and Bob. Obviously, Alice and
Bob want to keep their bit secret from the world. Hence, they need to be able to abort if Eve has
tampered in any way with their communications. Hence, we use a different protocol first proposed
in [Eke91] :

Protocol 2

19

1. Alice prepares n EPR pairs to Bob.

2. Alice sends the second qubits B1, . . . , Bn to Bob.

3. Bob takes n/2 random pairs and performs some test called the CHSH test. If this test
fails, Eve may have intercepted their communication and the protocol is aborted. Otherwise,
continue to the next step.

4. Measure all remaining n/2 pairs in a basis agreed on beforehand.

4.3 CHSH Test
Imagine a game where Alice and Bob each recieve a random bit x and y such that

x, y ∼ Unif({0, 1}).

Alice knows x but Bob does not (and vice versa with y). They cannot communicate with eachother,
which means neither can tell the other what bit they recieved. Alice and Bob must independently
decide on bits a and b to output. They win if they output bits such that

x⊕ y = a ∧ b.

What strategy will maximize their probability of success? Classically, it turns out that no strategy
can do better than probability 3

4 . This is true even if Alice and Bob share a source of randomness.
If Alice and Bob are permitted to share quantum entanglement, however, we can do better with
chance cos2(π/8) ≈ 0.85.

The CHSH test, therefore, is to randomly select the n/2 EPR pairs and see if we win the game
above about ≈ 0.85 of the time. If it is less, then Eve may have tampered and we abort.

We now detail what happens in the quantum case. Let’s say Alice and Bob share the state
|ψ⟩AB. This does not necessarily have to be an EPR pair. If Alice recieves an x, she will perform the
projective measurement {P 0

x , P
1
x}. Similarly, Bob recieves y performs the measurement {Q0

y, Q
1
y}.

(Note P 1
x = I − P 0

x and Q1
y = I − Q0

y). If Alice measures P 0
x , she sets a = 0. If she measures P 1

x ,
she sets a = 1. Bob does this similarly with b.

What, then, is the probability that we win the game? That is, what is the probability of
x⊕ y = a ∧ b? We calculate it by

1

4

1∑
x,y=0

∑
a,b :x⊕y=a∧b

⟨ψ|P ax ⊗Qby|ψ⟩ =
1

4
Tr
(
|ψ⟩ ⟨ψ|P ax ⊗Qby

)
.

This looks like a projective measurement where |ψ⟩ ⟨ψ| is our observable M and P ax ⊗Qby is our
density matrix ρ.

Let us clean this using observables

Ax = P 0
x − P 1

x , By = Q0
y −Q1

y.

An example of an obervable Ax is the Pauli operators Z = |0⟩ ⟨0|−|1⟩ ⟨1| and X = |+⟩ ⟨+|−|−⟩ ⟨−|.
Notice that

P ax =
1

2
(I + (−1)aAx), Qby =

1

2
(I + (−1)bBy).

20

The probability, therefore, can be rewritten as

1

4

1∑
x,y=0

∑
a,b :x⊕y=a∧b

⟨ψ|14(I + (−1)aAx)(I + (−1)bBy)|ψ⟩

=
1

16

8 + 2
1∑

x,y=0

(−1)x∧y ⟨ψ|14Ax ⊗By|ψ⟩

 .

Notice we are able to write the above because all terms that solely depend on a or b are cancelled
due to the alternative signs caused by the (−1)a and (−1)b factors.

21

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 5: BQP and Grover Search

February 9, 2022 Scribes: Isaac Struhl and Ben Harpe

5.1 Outline

Today’s lecture notes encompass the following (but some might spill over to next class):

• Quantum circuits

• BQP

• Search problems

• BQP vs NP

• The “polynomial method”, a lower bound on quantum search

5.2 Models of Quantum Computation

In quantum computing there are 3 models that are extremely popular:

• Quantum circuit model (today’s focus)

• Measurement-based model (potentially good for a project in this class!)

• Adiabatic model (don’t worry about, but good to know exists)

5.2.1 Quantum circuit model

Say you have a set of n qubits. They together form a vector space of dimension 2n, and there are
many unitaries that one can apply on this set of qubits. A unitary that applies to these qubits
will have dimension 2n × 2n. The quantum circuit model says you can approximate any
unitary using a sequence of elementary gates. 1 This is analogous to the classical computa-
tional model where NAND can generate any transformation. Let’s define the 3 gates:

First, the Hadamard:

H =

(
1√
2

1√
2

1√
2
− 1√

2

)
second, the T:

T =

(
1 0

0 e
iπ
4

)
1This is known as the Solovay-Kitaev theorem.

22

and third, CNOT:

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

The CNOT gate directly works on two qubits, conditionally flipping the second bit. The other two
gates are used on a single qubit, but can be used in the form 1⊗H to preserve the first qubit and
generate the result on a second register. As an example, the reversible XOR is given by CNOT:

CNOT (|a⟩ ⊗ |b⟩) = |a⟩ ⊗ |a⊕ b⟩

A quantum circuit is just a collection of these gates applied to registers in sequence. Note that
any gate can include the identity 1 to preserve the value of any register. The following diagram
gives an example of a simple quantum circuit.

In the above drawing, note that the circuit representation moves left to right but the unitary
representation moves right to left. Additionally, when drawing a CNOT gate, a box represents the
first input and a dot represents the second.

5.2.2 Performing a computation

How do we perform a computation? In general, a computation just applies a unitary on a collection
of qubits. So, we can generate this computation with a circuit, because we can use combinations of
H, T, and CNOT to approximate any unitary. As with classical computers, the larger the circuit
required, the more expensive the computation. Say we’re given the following function we want to
compute:

f : {0, 1}n → {0, 1}

To perform this computation, we have the following requirements:

• Qn needs to have poly(n) gates

• All of the gates must be specified by a classical computer - “uniformity”. This essentially
means is that the quantum circuit should not require you to solve an unsolvable problem (e.g.
the halting problem)

23

Let x be an input to the function, so

|x⟩ ≡ |x1⟩ ⊗ |x2⟩ ⊗ . . .⊗ |xn⟩

is the n-dimensional qubit input. We can also add a (potentially large, but polynomial in n) set of
empty registers (“work resistors”, also known as “ancilla qubits.”)

a(n) = |0⟩ ⊗ |0⟩ ⊗ . . .⊗ |0⟩

to help with the computation (though we will see in a later lecture that this isn’t strictly necessary).
We then apply a quantum circuit to this set of registers.

5.2.3 Interpreting the output

The goal of any computation is to eventually get a result, which requires measurement. We measure
in the computational basis, {|0⟩ , |1⟩}, interpreting the output as a classical result.

We can measure on one qubit, but what does it look like on the full space? This looks like

{Π0 = |0⟩ ⟨0|0 ⊗ 1, Π1 = |1⟩ ⟨1|0 ⊗ 1}

i.e., we measure on one qubit, and apply the identity (do nothing) to the rest. Now let’s check
correctness. We have

|Ψx⟩ = Qn |x⟩ |0⟩a(n)

If the result of the measurement is Πf(x), then we’re right. Thus, the probability of getting the
correct answer is

Tr
{
Πf(x) · |Ψx⟩⟨Ψx|

}
= ⟨Ψx|Πf(x) |Ψx⟩

In general, we want to have bounded error, e.g. correctness with probability ≥ 2
3 for all inputs x

(though 2
3 is an arbitrary choice).

Summary

This is BQP. BQP is a complexity class, which is a family of boolean functions. Intuitively, it
is the set of computational problems that can be efficiently solved by a quantum computer. The
classical analog is BPP, probabilistic instead of quantum. Any classical algorithm can be generated
by the quantum algorithm; that is, BPP is inside BQP. A formal definition is in Lecture 5 notes
on Perusall.

5.3 What can we do with quantum computation?

This and next lecture will try to convince us that quantum computers cannot solve NP-hard
problems. We’ll look at the search problem, and then next lecture we’ll make the connection to
classical computational hardness.

5.3.1 Search problem

A search problem is a problem of searching for a solution. If you’re given a hard problem like
3-SAT, there’s not much structure, so you can’t do much better than searching for a solution.

24

5.3.2 Oracle model

There is a black box function f : {0, 1}n → {0, 1}. You can’t interact with the internals of the
function in any way, but you can feed in inputs x and observe outputs f(x). The search problem
is as follows:

Find s ∈ {0, 1}n s.t. f(s) = 1

As we saw in homework 0, classically, we need to ask O(2n) times. In the hardest case, there is
a single s such that f(s) = 1 (that is, there is only one string that the function accepts, and we
need to find it). However, in the quantum case, we can do it in O(

√
2n) due to Grover’s

search algorithm. Crazy!

5.3.3 Classical interlude

The classical search algorithm is (without memoization)

(1) Choose a random x ∈ {0, 1}n

(2) Input x to oracle

(3) If f(x) = 1, output x. Else, go to (1).

The quantum version will replace these classical random processes with quantum ones.

5.3.4 Quantum version

Firstly, we need a reversible oracle, because in the quantum world, we can’t re-copy states. For-
tunately, this is an easy redesign. Considering the following oracle that oracle takes in an input x
and a bit b, and outputs x and b⊕ f(x). This way, we can feed in b⊕ f(x) as the second bit with
the same input x, and we’ll get back b, since b⊕ f(x)⊕ f(x) = b. Note that this oracle is different
from the oracle defined in 3.2, because in the former, we have no way of getting back to the original
bit. See the diagram below.

25

With a pure state |b⟩,
|x⟩ |b⟩

Of→ |x⟩ |b⊕ f(x)⟩

but this is just a classical query; we can do better with superposition, for example |b⟩ = |−⟩ = |0⟩−|1⟩√
2

:

|x⟩ |−⟩
Of→ |x⟩ |f(x)⟩ − |1⊕ f(x)⟩√

2

So, if f(x) = 0, nothing has changed, we get out |−⟩. If it is 1, we get a minus sign: − |−⟩. This
is a change in phase; the oracle is called a “phase oracle”, written as

Õf

5.3.5 Grover’s search algorithm

We now have the tools to define Grover’s search algorithm:

(1) Generate a quantum version of randomness, a superposition on n qubits:

H |0⟩ ⊗H |0⟩ ⊗ . . .⊗H |0⟩ ≡ H⊗n |0⟩⊗n

Which looks like
|+⟩ ⊗ |+⟩ ⊗ . . .⊗ |+⟩

For the remainder of the algorithm, we’ll refer to this superposition of qubits as a single
vector: |Ψ⟩

(2) Query the oracle Õf .

(3) Apply the following unitary:
U = I − 2 |Ψ⟩ ⟨Ψ|

Note that this is a unitary because U †U = 1 and U † = U . We can also write this as

U = I − 2 |Ψ⟩ ⟨Ψ| = H⊗n
(
I − 2 |0⟩⊗n ⟨0|⊗n

)
H⊗n = H⊗n

(
R̄

)
H⊗n

Now R̄ looks like a reflection, since

R̄ |x⟩ = |x⟩ ∀x ∈ {0, 1}n\{0n}

and
R̄ |0⟩⊗n = − |0⟩⊗n

5.4 Next Class

Next class, we will analyze this protocol, discuss the polynomial method, and discuss the relation-
ship between BQP and NP.

26

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 6

February 11, 2022 Scribes: Wenjie Gong, Aayush Karan

A brief notational comment: Although we often write a pure state |ψ⟩⟨ψ| as |ψ⟩ for notational
simplicity, it is important to note that

|ψ⟩⟨ψ|+ |ϕ⟩⟨ϕ| ≠ |ψ⟩+ |ϕ⟩ .

Indeed, in density matrix formalism,

|ψ⟩+ |ϕ⟩ = (|ψ⟩+ |ϕ⟩)(⟨ψ|+ ⟨ϕ|)
= |ψ⟩⟨ψ|+ |ψ⟩⟨ϕ|+ |ϕ⟩⟨ψ|+ |ϕ⟩⟨ϕ|

Now, we begin with a discussion of Grover’s search algorithm.

6.1 Grover’s Algorithm

Consider the following problem setup.

Goal: Given a function f : {0, 1}n → {0, 1}, ∃ a unique s ∈ {0, 1}n such that f(s) = 1. For all
other x ∈ {0, 1}n , x ̸= s, f(x) = 0. We want to find s. Note that as only a single s satisfies
f(s) = 1, this is the hardest case for both classical and quantum computation.

The algorithm allows interaction with an oracle Of , where |x⟩ |b⟩
Of−−→ |x⟩ |b⊕ f(x)⟩.

|x⟩
Of

|x⟩
|b⟩ |b⊕ f(x)⟩

As discussed in the pre-lecture notes, the action of Of is equivalent to the phase oracle Õf , defined

as |x⟩
Õf−−→ (−1)f(x) |x⟩.

|x⟩ Õf (−1)f(x) |x⟩

Here, x is an n-bit input, |x⟩ ≡ |x1⟩ ⊗ |x1⟩ . . . |xn⟩.

6.1.1 The Algorithm

Given this oracle Õf , Grover’s algorithm carries out the following steps while keeping track of a
current quantum state |χ⟩.

27

Procedure

Step 1. Initialize the running state |χ⟩ as

H⊗n |0⟩⊗n =
1√
2n

∑
x∈{0,1}n

|x⟩ ≡ |ψ⟩ . (6.1)

Step 2. Apply Õf to |χ⟩. In the computational basis, note that Õf will add a phase of −1 only
to |x⟩ such that the corresponding x ∈ {0, 1}n satisfies f(x) = 1; in particular, if and
only if x = s. Otherwise, |x⟩ is mapped to itself. We may succintly write

Õf = I − 2|s⟩⟨s|.

Step 3. Reflect the current state about |ψ⟩ by applying

2 |ψ⟩⟨ψ| − I = H⊗n(2 |0⟩⟨0|⊗n − I)H⊗n. (6.2)

This adds a phase of −1 to anything orthogonal to |ψ⟩ while leaving |ψ⟩ unchanged.
The culmination of Steps 2 and 3 creates a new state |χ′⟩, so set the running state
|χ⟩ = |χ′⟩ .

Step 4. Return to Step 2 and repeat T ∼ O(
√
2n) times.

Step 5. Measure in the computational basis, {|x⟩ ;x ∈ {0, 1}n}.

6.1.2 Analysis

Now, let’s analyze why this algorithm works. Note that our initial state |ψ⟩ = 1√
2n

∑
x∈{0,1}n |x⟩,

which is a linear superposition of all possible n-bit states |x⟩, can be written as:

|ψ⟩ = 1√
2n
|s⟩+

√
1− 1

2n
|t⟩ (6.3)

|t⟩ = 1√
2n − 1

∑
x ̸=s
|x⟩ (6.4)

Note that |s⟩ and |t⟩ are orthogonal states with magnitude 1, so they are an orthonormal basis for
the dimension 2 subspace they span. In general, suppose that |χ⟩ = α|s⟩+β|t⟩ for some coefficients
α and β. Applying Õf will flip the sign in front of α giving −α|s⟩+β|t⟩. Finally, applying 2|ψ⟩⟨ψ|−I
takes this state to 2C|ψ⟩ + α|s⟩ − β|t⟩ = α′|s⟩ + β′|t⟩ = |χ′⟩, for some constant C. In particular,
since |χ⟩ is initially in the subspace spanned by |s⟩ and |t⟩, it will always remain such under the
operations of Grover’s algorithm.

To gain some intuition for the geometric process underlying Grover’s algorithm, let us follow the
initial steps carefully. After Step 2 of the algorithm, the state |ψ⟩ becomes:

|ψ⟩ Step 2−−−−→ − 1√
2n
|s⟩+

√
1− 1

2n
|t⟩

28

Figure 6.1: A schematic depiction of the quantum state during Grover’s algorithm.

Step 3 implements a reflection 2 |ψ⟩⟨ψ| − I about the original state |ψ⟩ = 1√
2n

∑
x∈{0,1}n |x⟩, which

as mentioned before gives some linear combination of |s⟩ and |t⟩:

|ψ⟩ Steps 2 & 3−−−−−−−→ . . . |s⟩+ . . . |t⟩ ≡ |χ⟩

We can draw the subspace spanned by |s⟩ and |t⟩, as shown in Fig. 6.1. Initially, our state |ψ⟩ has

sin θ =
1√
2n
≈ θ

where θ is the angle of |ψ⟩ away from |t⟩. Note that since θ is very small, the small angle approx-

imation applies. Step 2 takes |s⟩ → − |s⟩ (a reflection about |t⟩), so |ψ⟩ Step 2−−−−→ |ψ′⟩, originally θ
above the |t⟩ axis, becomes rotated to θ below the |t⟩ axis. Step 3 negates anything orthogonal to

|ψ⟩ (a reflection about |ψ⟩), so |ψ′⟩ Step 3−−−−→ |ψ′′⟩ becomes rotated to 3θ above the |t⟩ axis.

With this in mind, let θi denote the angle between vectors |χ⟩ and |t⟩ at time step i. Now note
that application of the oracle reflects |χ⟩ about the x-axis, so θi → −θi. This reflected vector has
angle −(θi + θ) relative to |ψ⟩, so applying the ψ-reflection operator 2|ψ⟩⟨ψ| − I maps |χ⟩ to a
state with relative angle θi+ θ to |ψ⟩, and hence to angle θi+2θ from the |t⟩ axis. In other words,
θi+1 = θi + 2θ.

Since θ0 = θ, the recursive relation implies that after T time steps we will have θT = (2T + 1)θ.
We want θT to be as close to π

2 as possible, since at the end of the repeated oracle-and-reflection
process, we want a state that with high probability is measured in the state |s⟩. Hence

(2T + 1)θ = (2T + 1)
1√
2n

=
π

2
=⇒ T ≈ π

4

√
2n = O(

√
2n).

This completes our analysis of Grover’s search algorithm.

Note: Throughout this analysis we assumed that the number of s ∈ {0, 1}n such that f(s) = 1

denoted by M satisfied M = 1. If M > 1 and M is known, then θ is actually roughly
√

M
2n so we

29

can run for T = O
(√

2n

M

)
time steps. If M is unknown, we can binary search on M , which in

worst case scenario gives runtime O(n
√
2n) if M = 0.

Note: We can also try to factor in the time spent by the oracle in calculating f . For example, if
we suppose f is a 3-SAT instance, i.e. f = (x1 ∨ x2 ∨ x3) ∧ (x4 ∨ x5) ∧ (x6 ∨ x7...), then classically,
applying the oracle Of takes toracle ≈ n3 steps. We then have total steps Tclassical = O(n32n),
Tquantum = O(n3

√
2n). Often for f this oracle time is dominated by the search time from Grover’s.

Note: In the context of a database search, assuming no other structure, we can see how Grover’s
algorithm gives an O(

√
N) time to find a marked element. If there are N database elements, we

can encode them in roughly log2N bits, so Grover’s search gives O
(
2

log2 N
2

)
= O(

√
N).

Does Grover’s algorithm prove that quantum computation has a definite advantage
over classical computation? Unfortunately, the lower big-O complexity of search queries in
Grover’s algorithm is not evidence that the quantum case is better than classical the classical
case: to make this statement, we need to prove a tight lower bound on the classical runtime.
We can, however, say that Grover search achieves the best possible query complexity amongst
quantum algorithms to solve the search problem by employing a highly useful technique known as
the polynomial method.

6.1.3 Optimality

Here, we discuss why Grover’s algorithm is an optimal quantum algorithm. To do so, we must
consider how many queries to the oracle are required to solve the problem. This is answered by
the following theorem:

Theorem 6.1.1. Given an unknown f : {0, 1}n → {0, 1} and Of , any quantum algorithm needs
Ω(
√
2n) queries to Õf to determine whether

Case 1. ∄ s ∈ {0, 1}n st. f(s) = 1

Case 2. ∃ at least one s ∈ {0, 1}n st. f(s) = 1

with success probability ≥ 2
3 .

The proof of this theorem involves the polynomial method (introduced in [BBC+01]). In the
following discussion, we give an overview of the main ideas that go into the proof.

Main concepts of proof: The primary observation of the proof is that quantum algorithms give
multivariate polynomials in y1, y2, y3...y2n ; each variable is a bit. Here we define

yx = f(x), ∀x ∈ {0, 1}n.

Note that x is a bit string, whereas, with some abuse of notation, we treat the subscripts to y as
the decimal version of x. Now, we can write:

Õf =
∑
x

(−1)yx |x⟩⟨x| =
∑
x

(1− 2yx) |x⟩⟨x| (6.5)

30

Thus, when we apply Õf , where |ψ⟩ is any initial state, we have:

|ψ⟩ → Õf |ψ⟩ =
∑
x

(−1)yx |x⟩ ⟨x|ψ⟩ = |ψ1⟩

Measuring 0 (1) can be denoted by the projective operator Π0 (Π1), corresponding to Case 1 (Case
2). So, the probability of getting 0, for example, is given by

⟨ψ1|Π0 |ψ1⟩ =
∑
x,x′

(1− 2yx′)(1− 2yx)
〈
ψ
∣∣x′〉 ⟨x|ψ⟩ 〈x′∣∣Π0 |x⟩

In general, after T queries let the state of the algorithm be |ψT ⟩. Then the probability of measuring
outcome 0 is given by P2T ({yx}x∈{0,1}n) = ⟨ψT |Π0|ψT ⟩, which is a degree 2T polynomial. If we
define a series of unitaries Ui for each i ≤ T , then |ψT ⟩ is obtained by a general expression

UT Õf · · · · · · ÕfU2ÕfU1Õf |ψ0⟩.

This will generate amplitudes that are degree T polynomials in the yx’s, so the degree 2T result on
expectations follows.

A formal argument can be made as follows.

Lemma 6.1.2. Consider an algorithm after T queries on input x ∈ {0, 1}n. The final state
can be written: ∑

x∈{0,1}n
αx(y1, ..., y2n) |x⟩ (6.6)

Where each αx(y1, ..., y2n) is a multilinear polynomial in y1, y2, ..., y2n with degree at most T .

Proof. We can prove this by induction.
Base case: T = 0
The algorithm’s state after 0 queries is U0 |0⟩⊗n, where Ui is the unitary applied by the

algorithm following the ith query. This is independent of y, so the coefficients are constants of
degree 0.

Assumption: Assume that the state after T queries is∑
x∈{0,1}n

αx(y1, ..., y2n) |x⟩ ,

where αx(y1, ..., y2n) is a polynomial in y1, y2, ..., y2n with degree at most T .
Induction: After the T + 1th query, the state will look like:

UT+1 · Õf
∑

x∈{0,1}n
αx(y1, ..., y2n) |x⟩ =

∑
x∈{0,1}n

αx(y1, ..., y2n)UT+1 · Õf |x⟩

=
∑

x∈{0,1}n
αx(y1, ..., y2n)(1− 2yx)UT+1 |x⟩

Since αx(y1, ..., y2n) is no more than degree T in y1, y2, ..., y2n , αx(y1, ..., y2n)(1 − 2yx) is no
more than degree T + 1 in y1, y2, ..., y2n . As UT+1 does not depend on the y variables, we see

31

that the final state after T + 1 queries can be written∑
x∈{0,1}n

αx(y1, ..., y2n)(1− 2yx)UT+1 |x⟩

=
∑

x∈{0,1}n
βx(y1, ..., y2n) |x⟩

where βx(y1, ..., y2n) is a multivariate polynomial in y1, ..., y2n with no more than degree T +1.
We have thus shown Lemma 6.1.2 by induction.

Now, the probability to see a projective measurement Π0 on the final state after T queries
will be: ∑

x′∈{0,1}n

∑
x∈{0,1}n

αx(y1, ..., y2n)αx′(y1, ..., y2n)
〈
x′
∣∣Π0|x

〉
By Lemma 6.1.2, since αx, αx′ are no more than degree T , this probability will be no more
than degree 2T in y1, ..., y2n .

Now, if f is in Case 1, all the yx are zero, and we want

P2T ({yx}x∈{0,1}n) = P2T (0, 0, ...) ≥
2

3
. (6.7)

If even one of the inputs change, we need

P2T (0, · · · , 1, 0, ...) ≤
1

3
. (6.8)

Thus, the polynomial needs to change very fast in its variables. The final step of the proof is that
the polynomial must be of very high degree to accommodate this change, namely,

2T = Ω(
√
2n).

For example, consider a particularly symmetric case where

P2T ({yx}x∈{0,1}n) = Q2T

(
y1 + y2 + . . .+ y2n

2n

)
,

for a polynomial Q2T of degree 2T . In other words, P2T only depends on the hamming weight of
its input. By the conditions in Equations 6.7,6.8 on P2T , we haveQ2T (0) ≥ 2

3 andQ2T

(
1
2n

)
≤ 1

3 .

This change is too fast, unless T = Ω(
√
2n) (see Markov’s inequality for formal proof; [SV14,

Page 29, Theorem 5.1]). In general, P2T (y1, y2, . . . y2n) may not be in this nice form. However,
it is possible to reduce to this form via a symmetry argument. The idea is that the conditions
in Equations 6.7,6.8 on P2T stay the same if the input bits are permuted arbitrarily.

32

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 7

February 16, 2022 Scribe: Andrew Lu

7.1 Quantum Fourier transform over {0, 1}n

Recall the Hadamard gate H =

(
1√
2

1√
2

1√
2
− 1√

2

)
. Then we refer to the unitary operator H⊗n as the

quantum Fourier transform; note that

H⊗n |0⟩⊗n = |+⟩⊗n =
1√
2n

∑
z∈{0,1}n

|z⟩where |z⟩ = |z1⟩ ⊗ |z2⟩ ⊗ · · · ⊗ |zn⟩ ,

H⊗n |x⟩ = 1√
2n

∑
z∈{0,1}n

(−1)x.z |z⟩ ,

where x.z is the Boolean inner product of strings x and z, defined by x.z =
⊕n

i=1 xizi. Moreover,
if over all x ∈ {0, 1}n we have some amplitude function a : {0, 1}n → {−1, 1}, we have the more
general formula representing the Fourier transform of the amplitudes:

H⊗n
∑

x∈{0,1}n
a(x) |x⟩ = 1√

2n

∑
x

a(x)H⊗n |x⟩

=
1√
2n

∑
x

a(x)
∑
z

(−1)x.z |z⟩

=
1√
2n

∑
z

ã(z)︷ ︸︸ ︷(
1√
2n

∑
x

a(x)(−1)x.z
)
|z⟩

=
1√
2n

∑
z

ã(z) |z⟩ .

Thus, performing a Fourier transform over {0, 1}n takes n steps and circuit depth 1.

7.2 Simon’s Problem

Last week: We looked at Grover’s algorithm and how it gives a quadratic speedup to a search
problem. But the problem is unstructured ; we know nothing about the underlying nature of the
function being queried. Simon’s problem is an example of a function with more structure such that
quantum algorithms can achieve a higher degree of speedup over classical algorithms.

Like in Lecture 6, define an oracle Of for function f : {0, 1}n → {0, 1}n as follows:

Of |x⟩ ⊗ |b⟩ = |x⟩ ⊗ |b⊕ f(x)⟩ .

33

Problem: Given a function f : {0, 1}n → {0, 1}n which has the property that there exists nonzero
s ∈ {0, 1}n satisfying f(x ⊕ s) = f(x) for all x ∈ {0, 1}n, find s with minimal querying. While
classical (randomized) algorithms require Θ(

√
2n) queries, but there exists a quantum algorithm

that makes only O(n) queries.

Simon’s algorithm:

1. Prepare 1√
2n

∑
x |x⟩ |0⟩

⊗n.

2. Query Of to obtain 1√
2n

∑
x |x⟩ |f(x)⟩ =

1√
2n

∑
y∈Range(f)(|x⟩+ |x⊕ s⟩) |y⟩, where for each y,

the x term is one of the two n-bit strings that maps to y under f .

3. Measure the latter n qubits in the standard computational basis. We get a y with probability
1

2n−1 , and the quantum state of the first n qubits is now 1√
2
(|x⟩+ |x⊕ s⟩).

4. Perform QFT:

H⊗n(|x⟩+ |x⊕ s⟩) = 1√
2n

∑
z∈{0,1}n

(
(−1)x.z + (−1)x.z⊕s.z

)
|z⟩

=
1√
2n

∑
z

(−1)x.z (1 + (−1)s.z) |z⟩

=
1√
2n

∑
z∈{0,1}n:s.z=0

(−1)x.z |z⟩ .

Note that if we measure in the standard computational basis, we observe a random z satisfying
s.z = 0.

5. Repeat the entire above procedure n times to obtain z1, z2, . . . , zn−1, where s.zi = 0 for all i.
With high probability, the n − 1 vectors will be linearly independent, so in O(n) queries we
can calculate s via solving a system of linear equations.

Classical version analysis: In the classical model, note that we need a collision (two bit-
strings x, x′ satisfying f(x) = f(x′)) to be able to find s. If we keep choosing distinct values of
x ∈ {0, 1}n at random T times without replacement, the probability of no collisions is roughly(
1− 1

2n−1

) (
1− 2

2n−1

)
· · ·
(
1− T−1

2n−1

)
. The failure probability is on the order of e−O(T 2/2n), so we

must have T = Ω(
√
2n) in order to achieve error at most 1/3.

A alternative sketch of the lower bound is as follows: we can re-interpret our problem as
distinguishing between a 1-to-1 function from a 2-to-1 function when we guess s. When we query
x1, . . . , xT−1 without seeing a collision, we have eliminated

(
T−1
2

)
candidates for s, and querying

a T th input xT can only eliminate a T−1
(2n−1)−(T−1

2)
fraction of the remaining candidates. After T

steps, the probability that no collisions occur is

T∏
k=1

(
1− k

(2n − 1)−
(
k
2

)) ≥ (1− T

(2n − 1)−
(
T−1
2

))T > 0.99 for T = o(
√
2n).

34

7.3 Forrelation

Given two functions f, g : {0, 1}n → {0, 1} and their corresponding oracles Of , Og, define the
forrelation (Fourier + correlation) between f and g

F(f, g) = 1

23n/2

∑
x,y

(−1)x.ya(x)b(y) = 1

2n

∑
x

a(x)b̃(x),

where a, b : {0, 1}n → {−1, 1} are amplitude functions defined by a(x) = (−1)f(x), b(x) = (−1)g(x).
Similarly, define the correlation function

ζ(x, y) =
1

2n

∑
x

a(x)b(x).

There exists a randomized algorithm using O(1/ϵ2) queries which involves sampling points and
returning the empirical average (which is within ϵ additive error with high probability by Chernoff
bound).

Theorem 7.3.1. There exists a quantum algorithm to evaluate F(f, g) ± ϵ using O(1/ϵ) queries
(as opposed to Ω(

√
2n/n) queries in the classical randomized setting).

A quick sketch of the algorithm: we can write

F(f, g) = ⟨0n|H⊗nOfH
⊗nOgH

⊗n |0n⟩ ,

where we define unitary operators Of |x⟩ = f(x) |x⟩ and Og |x⟩ = g(x) |x⟩. So the idea is to apply
H⊗nOfH

⊗nOgH
⊗n on |0⟩⊗n and then conduct a projective measurement onto {|0n⟩ ⟨0n| , In −

|0n⟩ ⟨0n|}. Then F(f, g) is linearly related to the probability of observing a |0⟩ in the ancilla
register. By a Chernoff bound argument, if we iterate and perform O(ϵ−1) measurements, we will
be able to approximate F(f, g) within an additive error of ϵ with probability at least 2

3 .

35

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 08

February 18, 2022 Scribes: Richard Qiu, Matthew Nazari

8.1 Introduction to Phase Estimation

We will only briefly and informally discuss the phase estimation procedure today. Next lecture and
in the future, we will return and add formalism. Nevertheless, phase estimation is an important
technique.

Recall that a unitary operator V has complex eigenvalues of unit norm, so we can write them
as {e2πiqj}, where qj ∈ (0, 1) is the phase. Likewise, we can write the eigenvectors as {|ϕj⟩}. By
the spectral theorem, we can then write V in its eigenbasis:

V =
∑
J

e2πiqk |ϕj⟩ ⟨ϕj |

8.2 Informal Definition

Given error parameters of ϵ, δ, phase estimation with respect to a unitary V (which we will denote
PEV) is a quantum algorithm which takes as input an eigenvector |ϕJ⟩ and outputs O ∈ R such
that Pr(O ∈ qj ± ϵ) ≥ 1− δ with O(1

ϵδ) calls to V .

Remark: phase estimation works in superposition, so 1
2 |ϕj⟩ +

√
3
2

∣∣ϕj′〉 works as an input and
PEV will return either qj ± ϵ or qj′ ± ϵ, with probability 1− δ.

8.3 An Example

Let’s look at a simple example of what a phase estimation could look like. Suppose V has eigenvalues
drawn from {−1, 1} (so qj ∈ {0, 1/2}) so we can write V =

∑
j(−1)xj |ϕj⟩ ⟨ϕj |. Then the algorithm

might look like:

Step 1: Start with input state |ψ⟩. This can be an eigenvector or a superposition of eigen-
vectors. Add an ancilla register |+⟩z so that our state is now |+⟩z ⊗ |ψ⟩.

Step 2: Apply the controlled gate |0⟩⟨0|z ⊗ I + |1⟩⟨1|z ⊗V . If our ancilla register is measured
as 0, apply V . We can verify that this gate is indeed a unitary.

Step 3: Apply the Hadamard to our ancilla register: Hz ⊗ I.

Step 4: Measure the ancilla register in the computational basis.

36

If our input state |ψ⟩ = |ϕj⟩, then our algorithm does:

Step 1:
1√
2
(|0⟩+ |1⟩)⊗ |ϕj⟩

Step 2:
1√
2
(|0⟩+ (−1)xj |1⟩)⊗ |ϕj⟩

Step 3: |xj⟩ ⊗ |ϕ⟩

And after measurement, we would get xj (without error in this special case, where our eigen-
values are ±1). Similarly (ignoring normalization), if our input was a superposition of eigenvectors
|ϕj⟩+

∣∣ϕj′〉, our algorithm would return |xj⟩Z ⊗ |ϕj⟩+
∣∣xj′〉Z ⊗ ∣∣ϕj′〉 before measurement.

The algorithm for a more complex V follows this same idea, and we will return to this in a later
lecture.

8.4 Importance

Why is phase estimation so important? Historically, phase estimation was introduced by Kitaev1

as an alternate approach to Shor’s algorithm. We’ll see that many algorithms including Grover’s
search algorithm can be viewed in terms of phase estimation.

8.5 Phase Estimation for Search

Recall the search problem: suppose we have a function f : {0, 1}n → {0, 1} with solution set
S = {s ∈ {0, 1}n | f(s) = 1}. In the search problem, we want to output any s ∈ S.

Grover’s search algorithm uses a phase oracle Õf :

Õf |x⟩ =

{
|x⟩ x ̸∈ S
− |x⟩ x ∈ S

By successively applying Õf and W = H⊗n(2 |0⟩ ⟨0|⊗n − I)H⊗n a precise number of times, we can
find s ∈ S with high probability.

Also recall that we can turn the search problem into a decision problem with the following 2
cases:

Case 1: S is empty

Case 2: |S| = 1

Now, we will show that we can use phase estimation to solve the decision problem. First, we’ll
need to find the spectrum of WÕf . In case 1, Õf = I and W can be written in the Hadamard
basis as:

W =

1
−1

−1
. . .

−1

1https://arxiv.org/abs/quant-ph/9511026

37

In case 2, we have S = {s} and Õf = I − 2 |s⟩ ⟨s|. We also have W = 2 |ψ⟩ ⟨ψ| − I, where
|ψ⟩ = H⊗n |0⟩⊗n. Then, as in Grover’s algorithm, we can view WÕf as a rotation in the 2-
dimensional subspace spanned by |s⟩ and |s′⟩ (the component of |ψ⟩ orthogonal to |s⟩):

WÕf =

−1

. . .

−1
cos 2θ − sin 2θ
sin 2θ cos 2θ

The eigenvalues and eigenvectors of

[
cos 2θ − sin 2θ
sin 2θ cos 2θ

]
are e±2iθ and

[
1
±i

]
, respectively.

Now, we’ll make the connection to phase estimation. We’ll use unitary V = WÕf and input
vector |ψ⟩ = H⊗n |0⟩⊗n. We’ll call PEV with ϵ = θ

3π and δ = 0.01. In case 1, V |ψ⟩ = |ψ⟩ so
PEV returns a phase in 0 ± ϵ = (− θ

3π ,
θ
3π). In case 2, WÕf applied any number of times lives

in the subspace spanned by |s⟩ and |s′⟩, so PEV returns a phase in either θ
π ± ϵ = (2θ3π ,

4θ
3π) or

− θ
π ± ϵ = (− 4θ

3π ,−
2θ
3π). Thus, since these are disjoin intervals, we can determine which case our

problem lives in based on the output PEV .

38

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 09

February 23, 2022 Scribes: Sabina Dragoi, Kevin Mao

Today: Continuing Phase Estimation, Shor’s Algorithm, and Quantum Fourier Transform

9.1 Recap of Quantum Phase Estimation

Last time, we looked at the Quantum Phase Estimation algorithm. As a recap, this algorithm’s goal
is to estimates the phase of a unitary operator U , for which we we know one of its eigenstates |ψ⟩.
Since this operator is unitary, then the norm of all its eigenvalues is 1, and hence we can denote the
eigenvalue corresponding to |ψ⟩ as e2πiθ. Here, θ is is the phase that we want to estimate. Recall
that for this algorithm we use 2 registers: the counting register, and the qubit register for |ψ⟩.
The phase will be encoded in the counting register at the end of this algorithm, after we perform
the final measurement on the counting register. Throughout this calculation, we assume that the
counting register has n qubits, so there are 2n possible binary representation, or, equivalently, we
can measure the phase with precision 2π/2n.

Concretely, we looked at an example of a unitary whose eigenvalues were {1,−1}. Since these
are just 2 possible values for the phase, this means that we only required ⌈log2 2⌉ = 1 qubit in the
counting register.

The first step in the algorithm is to apply a Hadamard gate on all the qubits in the counting
register after initializing all of them in state |0⟩. Then, we apply the Controlled Unitary Gate
depending on the state of the qubits in the counting register, and then apply again Hadamard gates
on all the qubits in the counting register. In the end, the state of the qubits in this register will
give the phase we were looking for after we perform a measurement.

Step 1: Initialize |0⟩ |ψ⟩
Step 2: Apply H on counting qubits |+⟩ |ψ⟩

Step 3: Apply
(
|0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ U

)
Step 4: Apply H on counting qubits again |θ⟩ |ψ⟩

Note: This also works for when |ψ⟩ is not an eigenstate of U , but rather a superposition of its
eigenstates.

9.2 Quantum Fourier Transform

One way of introducing the Quantum Fourier Transform is to view it as natural step of Quantum
Phase Estimation. Let us now see how this works concretely.

39

Consider the general form of a unitary V =
∑

J e
2πiqJ |ϕJ⟩ ⟨ϕJ |, where |ϕJ⟩ are its eigenstates

and qJ are the corresponding eigenvalues. For now also assume that qJ = J
2n , for some J, n ∈ N ,

J ∈ {0, . . . , 2n − 1}, where n is the number of qubits in the counting register. After Step 1 of the
previous section, we have our system in the total state:

1√
2n

2n−1∑
y=0

|y⟩Z ⊗ |ϕJ⟩

In Step 2, we apply V y if you see |y⟩ ⟨y|Z , or equivalently, the global operator:∑
y

|y⟩ ⟨y|Z ⊗ V
y

Doing so gives the following final state:

1√
2n

2n−1∑
y=0

|y⟩ ⊗
(
|ϕJ⟩ e2πiy·J/2

n
)
because V y |ϕJ⟩ = e2πiy·J/2

n |ϕJ⟩

By moving the exponential, since it is just a number (not a ket), this is further equivalent to:

1√
2n

2n−1∑
y=0

(
e2πiyJ/2

n |y⟩
)
⊗ |ϕJ⟩

Now we know the final state after measuring should give the phase in the counting register, i.e.
|θJ⟩ ⊗ |ϕJ⟩. We would therefore want to have an operator that takes the superposition of the first
register and maps it to this phase. This is the Inverse Quantum Fourier Transform:

|θJ⟩ =
1√
2n

2n−1∑
y=0

e2πiyJ/2
n |y⟩

As mentioned before, we call this transformation, the Inverse Quantum Fourier Transform:

(QFT)−1 |θJ⟩ = |J⟩ , for J ∈ {0, . . . , 2n − 1}

By analogy, we can then also define the Quantum Fourier Transform, which should take basis
vectors from the initial basis {|0⟩ , . . . , |2n − 1⟩} to the Fourier basis {|θ0⟩ , . . . , |θ2n−1⟩}:

(QFT) |J⟩ = |θJ⟩ , for J ∈ {0, . . . , 2n − 1}

We made a bold statement above, which is that the QFT and IQFT are basically operators that
switch bases. This implies the existence of what is known as the Fourier basis, which is defined
by applying QFT on the basis vectors of our initial space, i.e. {|θ0⟩ , . . . , |θ2n−1⟩}. Here is a short
proof that these resulting vectors indeed form an orthonormal basis:

⟨θk|θj⟩ =
(1√

2n

2n−1∑
y=0

e−2πiyk/2n ⟨y|
)(1√

2n

2n−1∑
y=0

e2πiyj/2
n |y⟩

)

=
1

2n

2n−1∑
y=0

e2πiy(j−k)/2
n
= δkj

40

Although we only used the QFT for basis vectors in this example, this operator obviously applies
to states in superposition as well, just as the Phase Estimation also does:

|ϕ1⟩+ |ϕ2⟩ 7→ |θ1⟩ |ϕ1⟩+ |θ2⟩ |ϕ2⟩

In particular, the Quantum Fourier Transform takes a vector |v⟩ =
∑N=2n−1

j=0 vj |j⟩ and maps it

to a vector |ṽ⟩ =
∑N=2n−1

k=0 ṽk |k⟩ using the transformation:

ṽk =
1√
N

N−1∑
y=0

e2πiky/Nvy, y ∈ {0, 1, . . . , N}

9.3 Shor’s algorithm

Shor’s algorithm is motivated by the following problem:
Goal: Given N , find an output m that divides N (in polynomial time)
One potential way to approach this problem is through order/period finding, that is, given a,N ,

we want to output the smallest nonzero r ∈ Z such that ar ≡ 1 mod N . Let n = ⌈log2N⌉. Note
that we want a to be co-prime with N , or else the operator we are about to define is not unitary.
Further note that the probability of this condition being met is incredibility close to 1, especially
for numbers that are the product of 2 large primes, such as in RSA encryption.

For simplicity, let us focus on the setting where N = pq for two even primes and see how this
can reduced to order/period finding. This is also the setting used in RSA encryption.

First, note that if you find an a with its period r such that (i) ar ≡ 1 mod N and (ii) r
is even, then you immediately have (ar/2 − 1)(ar/2 + 1) ≡ 0 mod N . As both ar/2 − 1 and
ar/2 + 1 are not multiples of N , they both share a non-trivial prime factor with N . In the
setting where N = pq, we then know that {p, q} will be {gcd(ar/2 − 1, N), gcd(ar/2 + 1, N)}.

Next, how to find (a, r) with property (i) and (ii)? it turns out that from number theory,
we know that when N = pq, there’s δ = Ω(1) chance to get such an a with period r when a is
randomly sampled from 1 < a < N .

In summary, to reduce factoring N = pq to period finding, we randomly samples lots of
a1, a2, . . . , ak and run the order/period finding for each of them to get r1, r2, . . . , rk. We are
done as long as one of ri is even and this happens with probability at least 1− (1− δ)k.

Shor’s algorithm approaches this through quantum phase estimation on the following unitary
operator

Va |y⟩ = |ya mod N⟩
where |y⟩ is in the {|0⟩ , |1⟩ , . . . , |2n − 1⟩} basis. We note that

V z
a |y⟩ = |yaz mod N⟩

Letting ω = e2iπ/r, we have the following observations for Shor’s algorithm. Firstly, we observe
that the following state is an eigenstate of Va:

1√
r
(|1⟩+ ω |a⟩+ ω2

∣∣a2〉+ · · ·+ ωr−1
∣∣ar−1

〉
41

Next, applying unitary V , we get

1√
r
(|a⟩+ ω

∣∣a2〉+ ω2
∣∣a3〉+ · · ·+ ωr−1 |1⟩

=
wr−1

√
r

(ω |a⟩+ ω2
∣∣a2〉+ · · ·+ |1⟩)

This shows that wr−1 is an eigenvalue of Va. To show it in general, we would need more
eigenstates. These take the following form:

|λk⟩ =
1√
2n

(
|1⟩+ e−πik/2

n |y⟩+ e−πi2k/2
n ∣∣y2〉+ . . .

)
More generally, we can define |λk⟩ as

|λk⟩ :=
1√
r
(|1⟩+ ωk |a⟩+ ω2k

∣∣a2〉+ · · ·+ ω(r−1)k
∣∣ar−1

〉
for k = 1, 2, . . . , r − 1, and as a result, we would have

|1⟩ = 1√
r

r−1∑
k=0

|λk⟩ .

It is not hard to prove that the corresponding eigenvalues are wk, where k is an integer. Details
can be found on Page 4 of this note.

Another crucial observation is that |1⟩ can be written as a linear combination of the eigenvectors
above:

|1⟩ = 1√
2n

2n−1∑
k=0

|λk⟩

Then, from this setup, there are four main facts we can observe:

1. The phases of Va are of the form k
r , k ∈ Z

2. Phase estimation on Va, PEVa , works in superposition. In particular, phase estimation works
on the state |1⟩, which is the uniform superposition of |λ0⟩ , . . . , |λr−1⟩, as established above.

3. From this we will get k/r where k is uniformly random from k ∈ {0, 1, . . . , r − 1}. When k
and r are co-prime, the we can use the “continued fraction” to estimate r.

4. V z
a can be phase estimated in poly(n) steps for all z ∈ {0, 1, . . . , 2n − 1}

Main take-away: Shor’s algorithm works in poly(n) time versus the classical 2n
1/3

! (though this
has not been proven to be classically optimal bound)

42

https://people.eecs.berkeley.edu/~vazirani/s09quantum/notes/lecture6.pdf

9.4 Quantum Fourier Transform Revisited

Recall that

(QFT) |k⟩ = |θk⟩ =
1√
2n

2n∑
y=0

|y⟩ e2πiky/2n , for k ∈ {0, . . . , 2n − 1}

In order to understand the Quantum Fourier Transform, it helps to look at the classical equiv-
alent, namely the Discrete Fourier Transform, which changes the basis {v0, v1, . . . , vN=2n−1} to
another basis {ṽ0, ṽ1, . . . , ṽN=2n−1} (which might be more helpful for one’s purposes. For example,
it is already helpful in integer multiplication).

ṽk =
1√
2n

2n∑
y=0

e2πiky/2
n
vy

where ṽk is the Fourier transform of vk. The Discrete Fourier Transform takes O(N2) = O(22n)
steps, but the Fast Fourier Transform is a way that implements this same operator in O(N logN) =
O(n2n).

Let’s discuss FFT first: Expressing numbers in binary, which we write in the form ℓ1ℓ2 . . . ℓn
and y1y2 . . . yn, we have:

ṽℓ1,...,ℓn =
1√
2n

∑
y1,...yn

e2πi(y1y2...yn)(ℓ1ℓ2...ℓn)/2
n
vy1,...,yn

We can split this sum into cases, where the two cases are yn = 0 and yn = 1. In the first case
of yn = 0, we know that y1 . . . yn is even, so we can divide the denominator and numerator of
2πi(y1y2 . . . yn)(ℓ1ℓ2 . . . ℓn)/2

n by 2, giving us the first term in the following sum. In the yn = 1
case, we can ”factor out” the yn = 1, which gives us the second term in the following sum.

=
1√
2n

∑
y1,...yn−1

e2πi(y1y2...yn−1)(ℓ1ℓ2...ℓn)/2n−1
vy1,...,yn−1,0

+ e2πiℓ1/2
n 1√

2n

∑
y1,...yn−1

e2πi(y1y2...yn−1)(ℓ2...ℓn)/2n−1
vy1,...,yn

QFT is a quantization of the above, and works in a similar recursive manner. Concretely,
QFT takes a vector |v⟩ =

∑N=2n−1
j=0 vj |j⟩ and maps it to a vector |ṽ⟩ =

∑N=2n−1
k=0 ṽk |k⟩ using the

transformation:

ṽk =
1√
N

N−1∑
y=0

e2πiky/Nvy, y ∈ {0, 1, . . . , N}

Hence, for basis states we have the following transformation:

(QFT) |k⟩ = |θk⟩ =
1√
2n

2n∑
y=0

|y⟩ e2πiky/2n , for k ∈ {0, . . . , 2n − 1}

43

Since multi-qubit gates are physically hard to implement, then we want to achieve this operator
by only using 2-qubit gates. The gates that we will in the quantum circuit will be Hadamard gates

and controlled phase gates Rk =

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e−2πi/2k

.

The following circuit is an example of a QFT on 3 qubits (Ronald de Wolf’s ”Quantum Com-
puting: Lecture Notes”). Notice that we can draw clear parallels with FFT: first, the Hadamard
gate is analogous to the ’divide’ step and then the Rk gates are used to introduce the e2πiℓ1 factor.
Then the circuit recurses on smaller number of qubits, i.e. just on |k2⟩ and |k3⟩.

44

https://homepages.cwi.nl/~rdewolf/qcnotes.pdf
https://homepages.cwi.nl/~rdewolf/qcnotes.pdf

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 10

February 25, 2022 Scribes: Amir Shanehsazzadeh

Today: Quantum Walks

1. Classical random walk over a graph

2. Definition of quantum walk

3. Jordan’s Lemma

10.1 Motivation

Quantum walks are useful for solving many problems, just like classical random walks. For an
immediate example, note that quantum walks generalize Grover’s search algorithm.

Applications:

1. Generalize Grover’s

2. Element distinctness problem

3. Hamiltonian simulation

10.2 Random Walk over a Graph

Suppose we have a graph G = (V,E). For connected nodes x, y let Pxy = 1
dx

where dx is the

degree of x (for unconnected nodes Pxy = 0). The matrix P ∈ R|V |×|V | is the transition matrix
corresponding to random walk on the graph G with transition probabilities between nodes x and
y given by Pxy. The stationary distribution corresponding to P is ν ∈ R|V | where νx = dx

|E| . To see
this note that ∑

x:y∼x
Pxyνx =

∑
x:y∼x

1

dx
· dx
|E|

=
∑
x:y∼x

1

|E|
=

dy
|E|

= νy.

We can do an eigenvalue decomposition: P = B−1 · diag(λ1, λ2, ...) ·B with λ1 = 1 and λ1 > λ2 >
λ3 > · · · . The spectral gap is defined as γ = λ1 − λ2. It is well-known that convergence time to
the stationary distribution scales inversely with γ.

Detailed balance condition: νxPxy = 1
|E| = νyPyx. Define the matrix D such that Dxy =√

PxyPyx. Then under detailed balance we have

Dxy =
√
PxyPyx = Pxy

√
νx
νy

=⇒ D = diag(
√
ν1,
√
ν2, ...) · P · diag

(
1
√
ν1
,

1
√
ν2
, ...

)
.

45

Note that D is Hermitian and has the same eigenvalues as P . We will come back to D in our
analysis of the quantum walk.

Random walk without forgetting: Quantum walks will be unitary and unitaries are reversible.
We want a reversible analog of the classical random walk so that we can quantize it. Some ap-
proaches:

1. Coins: (x, c) = (x, equal-weighted coin with dx sides). At x flip c to get value i ∈ [1, 2, ..., dx]
and move to the ith neighbor of x. The information in the coin is sufficient for reversing the
process.

2. Edge Process: Take left and right copies of the vertices VL and VR, respectively. Connect
x ∈ VL with y ∈ VR if (x, y) ∈ E. This forms a bipartite graph G′ = (V ′, E′).

Figure 10.1: Edge Process for Random Walk

Now we perform a random walk over edges going from VL to VR and back: start at e =
(x, y) ∈ E′ in a “left-looking” manner (corresponding to starting at x ∈ V) the next step is
to uniformly randomly select a (y, x′) ∈ E′ that is “right-looking” (i.e. uniformly randomly
select an edge originating at y). Repeat this process of selecting “right-looking” nodes from
“left-looking” nodes and vice-versa. There is a clear correspondence between edges in G′ and
edges in G so this random walk simulates a random walk on G. This is reversible because you
move from left to right and back and so if you are at VR you can look to the left to find the
corresponding node in VL and vice-versa.

Viewing this as a random walk over the edges we see that the stationary distribution µ
is uniform over the edges: any edge e has probability µ(e) = 1

|E| . This implies νx = dx
|E| for

the random walk over G. To see the former claim let e, e′ be edges in the bipartite graph G′

and note that

P (e′) =
∑
e

P (e′|e)P (e) =
∑
e

P (e|e′)P (e) = 1

|E|
∑
e

P (e|e′) = 1

|E|
.

46

We use above the fact that P (e′|e) = P (e|e′). To see this, note that P (e|e′) is non-zero if
and only if the edges e and e′ share a vertex in VL (left-looking step) and VR (right-looking
step), in which case 1

P (e|e′) is the number of edges incident on that shared vertex. By a similar

argument, we get the same value for P (e′|e).

10.3 Quantum Walk

Properties:

1. A unitary W instead of a transition matrix P

2. Stationary state |µ⟩ similar to the stationary distribution of the edge random walk µ.

3. ”Spectral gap” ≈ √γ with γ the spectral gap of P (source of speed-up)

4. Reflects about |µ⟩ (operator 2 |µ⟩ ⟨µ| − 1), does not prepare |µ⟩ (source of speed-up)

An example of usefulness is search. Classically, we prepare µ, check it for a match, and then resam-
ple µ if there is no match. Quantum search gives a quadratic speed-up and involves us preparing
|µ⟩, checking our state with a quantum oracle, and if necessary reflecting about |µ⟩. For Grover
search we used |µ⟩ = |+⟩⊗n and the quantum oracle Õf = 1− 2 |s⟩ ⟨s|.

Constructing the quantum walk is similar to the edge process construction of the classical ran-
dom walk. Consider the quantum states:

∣∣ψ1
x

〉
=
∑
y

√
Pxy |x⟩⊗|y⟩ = |x⟩⊗

(∑
y

√
Pxy |y⟩

)
,
∣∣ψ2
y

〉
=
∑
x

√
Pyx |x⟩⊗|y⟩ =

(∑
x

√
Pyx |x⟩

)
⊗|y⟩

and define the unitary

W =

((∑
x

2
∣∣ψ1
x

〉 〈
ψ1
x

∣∣)− 1) ·((∑
y

2
∣∣ψ2
y

〉 〈
ψ2
y

∣∣)− 1) .
W consists of two steps: conditioning on states in the left qubit and reflecting about a superposi-
tion of those edges (left operator) and then a similar reflection for states in the right qubit (right
operator).

Theorem: Let P the transition matrix of the classical walk corresponding toW. Denote the eigen-
values of P as {λJ} and note that λ1 = 1. The eigenvalues ofW are {e±2iθJ} = {1, e±2iθ2 , e±2iθ3 , ...}
where cos θJ = λJ . Note that

cos θ2 = λ2 = λ1 − (λ1 − λ2) = 1− γ, cos θ2 ≈ 1− θ22
2

=⇒ θ2 ≈
√
2γ.

Proof Sketch: We will use Jordan’s lemma, which allows us to decompose projector matrices into
block diagonal form where the blocks are 1 × 1 or 2 × 2 matrices (corresponding to 1-D and 2-D
subspaces, respectively). We can write

Π1 =
∑
x

∣∣ψ1
x

〉 〈
ψ1
x

∣∣ , Π2 =
∑
y

∣∣ψ2
y

〉 〈
ψ2
y

∣∣ =⇒ W = (2Π1 − 1) · (2Π2 − 1).

47

Note that Π1 and Π2 are projectors so Π2
1 = Π1 and Π2

2 = Π2. Jordan’s lemma lets us decompose
Π1 and Π2 into matrices with 1× 1 or 2× 2 blocks along the diagonal.

Take the matrix D such that Dxy =
√
PxyPyx. Detailed balance gives us Dxy =

√
µx · Pxy · 1√

µy

and so the eigenvalues of D and P are the same. Now note that Dxy =
√
PxyPyx =

〈
ψ1
x

∣∣ψ2
y

〉
, which

gives

Π1Π2 =
∑
x,y

∣∣ψ1
x

〉 〈
ψ1
x

∣∣ · ∣∣ψ2
y

〉 〈
ψ2
y

∣∣ =∑
x,y

Dxy

∣∣ψ1
x

〉 〈
ψ2
y

∣∣ .
The sets {

∣∣ψ1
x

〉
}x∈V and {

∣∣ψ2
y

〉
}y∈V are orthonormal bases which implies that the singular values

of Π1Π2 are the eigenvalues of D. We now apply Jordan’s lemma to relate the singular values of
Π1Π2 with the eigenvalues of W , which gives the desired relationship between the eigenvalues of
W and the eigenvalues of P .

48

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 11

March 2, 2022 Scribes: Liam McInroy

Today: revisiting quantum walks, collision problem, Hamiltonians.

11.1 Revisiting Quantum Walks

Recall from Section 10.2 that we introduce random walks.

Revisiting Classical Random Walks

Let G = (V,E) be an (undirected1) graph, with the transition matrix P ∈ R|V |×|V | given by

Pxy =

{
1
dx

if (x, y) ∈ E
0 else,

(11.1)

where dx is the degree of vertex x ∈ E. Then we can interpret Pxy as the probability of walking
from vertex x to y, and we can form a markov chain over the state space of vertices V with the
transition matrix P . For this particular example, the markov chain has a stationary distribution
µ ∈ R|V | satisfying

∑
µxPxy = µy.

A common question in the study of markov chains is the mixing time, or the number of iterations
of P that must be applied to converge to the stationary distribution. One example of why this
might be useful, is that if we wanted to generate random samples of the vertices from the stationary
distribution then we only need to randomly walk from any starting vertice given by the mixing
time to result in a new randomly sampled vertice from the stationary distribution. So we would
only need to store the local edges of the graph.

So the complexity measure we are interested in calculating is the mixing time, and this is
possible for the random walk we’ve constructed by analyzing the spectral gap γ of P . Specifically,
we may find an eigenvalue decomposition P = B−1 · diag(λ1, . . .) · B for some invertible matrix
B ∈ R|V |×|V | and eigenvalues λ1 > λ2 > λ3 > It’s a general result of stochastic matrices that
λ1 = 1, and we define the spectral gap as

γ = λ1 − λ2 = 1− λ2. (11.2)

It’s also a general result that the mixing time is then inversely proportionally related to γ. For
the exact statement, see Theorem 3 of this document.

1(x, y) ∈ E if and only if (y, x) ∈ E

49

https://people.cs.umass.edu/~luke/mcmcmixing.pdf

The Edge Process

One classical technique of simulating a classical random walk is the edge process random walk. This
construction is useful for introducing quantum random walks, as it is a reversible analog of the
classical random walk and thus more suitable for quantization.

We start with the original G = (V,E) as given in the classical random walk scenario, but will
perform a modified random walk on a newly constructed bipartite graph G′ = (V ′, E′). Concretely,
we have V ′ = VL ∪ VR where VL and VR are two distinct copies of V , one on the left and right side
of the bipartite matching. The edges E′ are defined by choice of x ∈ VL and y ∈ VR and create
the edge (x, y) ∈ E′ if and only if (x, y) ∈ E as considering x, y as elements of V . We end up
with two edges of G′ for each edge of G, if (x, y) ∈ E then there is the “left-looking” edge (x, y)
and the “right-looking” edge (y, x). Importantly, for two edges (x, y), (x′, y′) ∈ E′, then the edge
(x′, y′) may be selected by “right-looking” from the edge (x, y) only if x′ = y, and vice versa the
edge (x, y) may be selected by “left-looking” from the edge (x′, y′) only if y = x′.

Then we may perform a random walk over the edges, rather than vertices, by alternating
between randomly selecting the “left-looking” and “right-looking” edges. From the property noted
above, then we end up with the identity that the conditional probability of selecting any e′ from e
is equal to the conditional probability of selecting any e from e′. This makes the process reversible
(unlike the classical random walk on vertices where Pxy ̸= Pyx in general). We also obtain that
the stationary distribution µ′ ∈ R|E′| is uniform, and as there are twice as many edges in E′ as E,
then we result in the equivalent stationary distribuion over vertices of G as in the classical vertex
random walk.

Revisiting Quantum Walks

The construction of the graph used in quantum walk is analogous to the construction of the edge
process in classical random walks. However, naively quantization and phase estimation would
suggest that we ought to reflect around reflect around some |µ⟩ of the stationary distribution and
naively preparing |µ⟩ by computing µ would result in no speedup. Instead our aim is to construct
an operator that behaves like reflection around |µ⟩ without computing |µ⟩ explicitly.

So let G = (V,E) be a graph again, with P given as before. We introduce bases {|x⟩ : x ∈ V }
of a |V |-dimensional space and will operate in the space given by the bases {|x⟩ ⊗ |y⟩ : x, y ∈ V }
and there is naturally a subspace H = span{|x⟩ ⊗ |y⟩ : (x, y) ∈ E} which we will aim to constrain
our operations to lie within.

Then we construct our unitary matrixW to represent the operator 2 |µ⟩⟨µ|−1 without preparing
|µ⟩ via

W =
[∑

x

2
∣∣ψ1
x

〉〈
ψ1
x

∣∣− 1][∑
y

2
∣∣ψ2
y

〉〈
ψ2
y

∣∣− 1], (11.3)

for the states (
∣∣ψ1
x

〉
)x∈V and (

∣∣ψ2
y

〉
)y∈V given by

∣∣ψ1
x

〉
=
∑
y

√
Pxy |x⟩ ⊗ |y⟩ ,∣∣ψ2

y

〉
=
∑
x

√
Pyx |x⟩ ⊗ |y⟩ .

(11.4)

50

By construction, then we note that Π1 =
∣∣ψ1
x

〉〈
ψ1
x

∣∣ and Π2 =
∣∣ψ2
y

〉〈
ψ2
y

∣∣ satisfy
Π1Π2 =

∑
x,y

√
PxyPyx

∣∣ψ1
x

〉 〈
ψ2
y

∣∣ =∑
x,y

√
µxPxy

1
√
µy

∣∣ψ1
x

〉 〈
ψ2
y

∣∣ . (11.5)

Thus we find that Π1Π2 shares the eigenvalues of P , and we claim these are also shared by the
classical random walk on G induced by the iteration of W . Further, Jordan’s lemma then allows
us to relate the eigenvalues of W to those of Π1Π2 and P via the expression

Spec(W) =
{
e±2iθ1 , e±2iθ2 , . . . ,

}
, (11.6)

for the collection of (θi) such that cos θi = λi. In particular, we have that θ1 = 0 as λ1 and thus

cos θ2 = λ2 = 1− γ, (11.7)

so the Taylor approximation cos θ ≈ 1− θ2

2 provides

θ2 ≈
√

2γ. (11.8)

So if we consider the phase estimation PEW of W such that

PEW |ϕ⟩ 7→

{
|ϕ⟩ if |ϕ⟩ = |µ⟩ ,
− |ϕ⟩ else,

(11.9)

then amplitude amplification tells us that we may approximate 2 |µ⟩⟨µ| − 1 with O
(

1
θ2

)
=

O
(

1√
γ

)
applications of PEW . Thus we end up with a quadratic speedup over a classical edge

process.

11.2 Collision Problem

Let us now see a tangible example of random walks where quantum algorithms are superior. We’ll
look at the collision problem.

Recall in the Grover Problem that there is f : {0, 1}n → {0, 1}m for m > n, and we wish to
determine if f is injective or not (if there is x, y ∈ {0, 1}n with f(x) = f(y), or a collision).

Classically, this requires θ (2n) queries using a randomized algorithm.

In the quantum domain, Ambainis found θ
(
2

2n
3

)
queries of the oracle are necessary. Below

is a brief description of both algorithms, and a back of the envelope calculation for the quantum
improvement. This note contains more details.

To determine if there is a collision, we naively could check all pairs of inputs for collision. A
simple generalization of this would be to compare all subsets of size R of the inputs, but we would
be making many redundant queries. So instead, suppose we initially choose R inputs from {0, 1}n
and performing queries on this subset to check for collisions. Now, instead of re-sampling another
randomly sampled R more inputs at the next iteration, we randomly choose only one of the already
queried R inputs and replace it with a newly randomly sampled input.

This induces a random walk on the Johnson graph of {0, 1}n, the graph composed of vertices
representing the various size R subsets of {0, 1}n with between subsets if they differ in only one

51

https://www.math.uwaterloo.ca/~amchilds/teaching/w08/l16.pdf

element. We then mark subsets which contain distinct elements with non-unique images under f
for search. We can characterize the expected number of steps to find a collision by the number of
expected collisions, the expected time to reach a marked element (the mixing time), and so we may
calculate the number of expected queries from these numbers.

It is a folklore result that the spectral gap of an R-Johnson graph is γ = 1
R , and so we require

O
(

1
γ

)
steps to reach the stationary distribution. Similarly, the expected number of marked ele-

ments for search may be bounded by N2

R2 , for N = 2n. Classically, we may calculate the expected
number of queries to find the collision,

R+ 1
(1
γ

)(N2

R2

)
= R+

N2

R
→ O(N), (11.10)

Using the quantum speedup of the quantum random walk and search, we improve the mixing
time,

R+ 1

√
1

γ

√
N2

R2
= R+

√
R

√
N2

R2
= R+

N√
R
→ O

(
N

2
3

)
. (11.11)

11.3 Hamiltonian Complexity

We now will move onto Hamiltonian complexity.
For our purposes, think of a Hamiltonian as any Hermitian matrix. There is some more sig-

nificant physical significance as representing the potential and kinetic energy of a system which
motivates simulation of Hamiltonians.

Anyways, consider a Hamiltonian H in d-dimensions and consider its eigenvalue decomposition,

H =
d∑
i=1

Ei |ϕi⟩⟨ϕi| , (11.12)

for some non-descending eigenvalues E1 ≤ E2 ≤ . . . ≤ Ed with corresponding eigenvectors
(ϕi)i≤d. There are some significant associations to a Hamiltonian,

• The ground state |ϕ1⟩⟨ϕ1|,

• The spectral gap γ = Ei − E1 for the least i such that Ei ̸= E1,

• The Gibbs state for the inverse temperature parameter β,

e−βH =
1

Tr{e−βH}

d∑
i=1

e−βEi |ϕi⟩⟨ϕi| , (11.13)

• The expectation values of the operators on the ground state of the Hamiltonian

µ = Tr{|ϕ1⟩⟨ϕ1| · µ},
E1 = Tr{|ϕ1⟩⟨ϕ1| ·H},

(11.14)

52

• The time evolution of a state ρ via

ρ 7→ e−iHtρeiHt, (11.15)

Of some particular interest are local Hamiltonians, where we may decompose H as

H =
∑
α

bαPα, (11.16)

where the collection of (Pα) are tensors of Pauli matrices. We denote a local Hamiltonian as
k-local if each Pα has at most k non-identity Pauli matrices.

For instance, we can phrase 3SAT as a local Hamiltonian for which the ground state is a
satisfying assignment.

We also may be interested in Hamiltonian simulation, for the computation of a matrix V which
approximates the time evolution of a Hamiltonian, or precisely

V ρV † ≈ e−iHtρeiHt. (11.17)

Hamiltonian simulation is in the class of QMA-hard complexity, and closely tied to the com-
plexity of computing E1. Which in turn connects to quantum walks to be covered in the next
lecture.

53

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 12

March 4, 2022 Scribes: Tarun Prasad

Today’s lecture notes are on the following topics:

• Quantum proofs

• Recap of Cook-Levin theorem

• Quantum Cook-Levin theorem

• Feynman-Kitaev clock construction

12.0 Classical Proof Systems and Quantum Proofs

Before we begin discussing quantum proofs, let us first recall some of the classical proof systems.
In each of the following systems, L is a language, x is some string over the alphabet of L, and the
goal is for a verifier to efficiently decide whether or not x ∈ L with the help of a prover.

12.0.1 NP (Non-deterministic polynomial time)

In the NP protocol, the prover sends a proof y, whose length is polynomial in the length of x, and
the verifier then runs a deterministic polynomial-time algorithm V that looks at both x and y,
where V is such that

(Completeness) x ∈ L =⇒ ∃yV (x, y) = 1

(Soundness) x ̸∈ L =⇒ ∀yV (x, y) = 0.

Verifier
y←−−−−−−−−

|y|=poly(|x|)
Prover

One example of a language L in NP is 3SAT, the set of all satisfiable boolean formulas consisting
of collections of boolean variables arranged into clauses, where up to three variables (or their
negations) are separated by ORs in each clause, and the clauses themselves are separated by ANDs,
for instance,

(x1 ∨ x2 ∨ x̄3) ∧ (x2 ∨ x̄4 ∨ x5) ∧ · · · .

The proof here is simply an assignment to the variables. If the formula is satisfiable, then there is
an assignment that the prover can send to the verifier, who can then quickly check that it is valid.
If it is not satisfiable, then no matter what proof the prover sends, it will be impossible for the
verifier to satisfy all the clauses.

Not only is 3SAT in NP, it is also (informally) at least as hard as any problem in NP, as the
Cook-Levin theorem states.

54

Theorem 12.0.1 (Cook-Levin). 3SAT is NP-complete.

Proof. We have just shown that 3SAT is in NP; what remains to be shown is that 3SAT is NP-hard,
i.e., any problem in NP can be reduced to it. Consider an arbitrary problem in NP: by defini-
tion, there must exist some polynomial-size verifier circuit V that takes the input x = x0x1 . . . xn
and the proof y = y0y1 . . . ym and outputs 0 or 1 depending on whether the proof verifies the
instance. To encode this circuit in a 3SAT instance, we will introduce the following boolean vari-
ables: x1, . . . , xn, y1 . . . , yn representing (and enforced to be equal to) the inputs to the circuit, and
zi representing the output of each gate i. This can be enforced by adding constraints representing
the computation of each gate; for example, if z3 corresponds to the output of an OR gate that takes
x3 and x4 as inputs, we add the constraint (z3 ↔ x3∨x4) (of course, after representing equivalences
etc. in a manner compatible with 3SAT).

Adding such constraints for all gates, along with a final clause enforcing that the output bit
is 1, will suffice to simulate the circuit: if there is a y that the circuit accepts, there must be a
corresponding satisfying assignment to our 3SAT instance; if there is no such y, there can also be
no satisfying assignment since its existence will enable us to backtrack through the computation
and arrive at a valid y.

12.0.2 MA (Merlin-Arthur)

The MA protocol is similar to the NP protocol, except in that the verifier is allowed to use ran-
domness. As before, the prover sends a proof y, whose length is polynomial in the length of x, and
the verifier then runs a randomized polynomial-time algorithm V that looks at both x and y. In
other words, the verifier is allowed to toss coins and use the results of the coin tosses (say r) in its
algorithm. It is important to note here that the proof y may depend on x but not on r, i.e., the
prover does not get to see the private randomness of the verifier. The requirement in this case is
that

(Completeness) x ∈ L =⇒ ∃yPr
r
[V (x, y, r) = 1] = 11

(Soundness) x ̸∈ L =⇒ ∀yPr
r
[V (x, y, r) = 1] ≤ e−Θ(|x|).

Verifier
y←−−−−−−−−

|y|=poly(|x|)
Prover

What would be an example of an MA-complete problem (i.e. the analog of 3SAT for MA)? As
it turns out, there was no known example until one was identified (Bravyi & Terhal 2009) within
the field of quantum complexity! The Cook-Levin theorem fails here simply because we do not
know of a way to enforce that the verifier started with a random coin in our reduction to 3SAT.

12.0.3 QMA (Quantum Merlin-Arthur)

By abuse of terminology, many refer to this class as Quantum NP because they think of it as a
quantum analog of NP, but really it is a quantum analog of MA because we allow some small

1This probability can equivalently be specified as being at least 1− e−Θ(|x|).

55

probability of error. This time, the verifier has a quantum computer, i.e., a quantum circuit with
polynomially many gates that takes in the input x along with a quantum state |ψ⟩ (on polynomially
many qubits) as proof from the prover. The verifier runs its quantum circuit and finally chooses
one of its output qubits (say O) and performs a measurement in the {|0⟩ , |1⟩} basis: we shall call
this measurement outcome the output of the algorithm. Here, we require that

(Completeness) x ∈ L =⇒ ∃ |ψ⟩Pr[V (x, |ψ⟩) = |1⟩] ≥ 1− e−Θ(|x|)

(Soundness) x ̸∈ L =⇒ ∀ |ψ⟩Pr[V (x, |ψ⟩) = |1⟩] ≤ e−Θ(|x|).

As a reminder, the mathematical expression for the above probability is:

Pr[V (x, |ψ⟩) = 1] = Tr
[
(|1⟩⟨1|O ⊗ 1)V |x⟩⟨x| ⊗ |ψ⟩⟨ψ|V

†
]

= ⟨x| ⊗ ⟨ψ|V †(|1⟩⟨1|O ⊗ 1)V |x⟩ ⊗ |ψ⟩ .

Verifier
|ψ⟩←−−−−−−−−−−−−−−

on poly(|x|) qubits
Prover

12.1 Quantum Cook-Levin Theorem

Definition 12.1.1. The 5-local Hamiltonian problem 5-LHPa,b is defined as follows: given a 5-local
Hamiltonian H =

∑
α qαPα, decide whether

1. E1(H) ≤ a, or

2. E1(H) ≥ b,

where E1(H) is the ground state energy of H and a ≤ b.

Recall from Section 11.3 that this problem is a generalization of 3SAT: setting a = 0 and b = 1/2
after constructing our LHP instance will suffice because a 3SAT instance will be satisfiable if and
only if the corresponding instance of 3-LHP0,1/2 has 0 as its minimum eigenvalue. The quantum
analog of 3SAT being NP-complete is the following theorem.

Theorem 12.1.2 (Quantum Cook-Levin, Kitaev 1999). The 5-local Hamiltonian problem 5-LHPa,b
is QMA-complete for inverse-polynomial gap b− a.

Proof. First we will show that 5-LHPa,b is in QMA for b − a = Ω
(

1
poly(|x|)

)
. A simple way to do

this is for the prover to send the ground state |ϕ1⟩ as proof. Recall that H |ϕ1⟩ = E1 |ϕ1⟩, and so,

E1 = Tr[H |ϕ1⟩⟨ϕ1|] =
∑
α

qαTr[Pα |ϕ1⟩⟨ϕ1|].

So all the verifier needs to do now is to compute the expectation values Tr[Pα |ϕ1⟩⟨ϕ1|] for all α,
from which it can compute E1 and check whether E1 ≤ a or E1 ≥ b. How can it compute these
expectation values? One way of doing so is to instead compute an estimate by having the prover
send multiple copies of |ϕ1⟩ and calculating the empirical average (using Chernoff bounds to show
that this is close to the true expected value).

56

Another method is through a Hamiltonian simulation. Implementing and applying the unitary
eiHt, we notice that

eiHt |ϕ1⟩ = eiE1t |ϕ1⟩ ,

which follows from the fact that Hk |ϕ1⟩ = Ek1 |ϕ1⟩. In other words, the phase of the unitary has
information about the eigenvalue E1 and we can obtain this to the required accuracy by running
the phase estimation algorithm.

The second part of the quantum Cook-Levin proof is showing that 5-LHPa,b is QMA-hard for
a = e−Θ(|x|) and b = 1

c|x|3 . This requires showing that any problem in QMA can be reduced

to a local Hamiltonian problem. To do so, let us try to follow the same idea as in the classical
Cook-Levin theorem (see proof of Theorem 12.0.1). Analogously define |x⟩ = |x0x1 . . . xn⟩ to be
the input, |ϕ⟩ = |ϕ0ϕ1 . . . ϕm⟩ to be the proof, and |θi+1⟩ to be the output after each “layer” of
quantum gates Ui. We want to enforce

|θi+1⟩ = Ui |θi⟩

for all i. But how do we enforce this constraint using local Hamiltonians?
Consider the following example: say after 100 steps of the computation, we arrive at the fol-

lowing state, called a cat state:

|θ100⟩ =
1√
2
|00 · · · 0⟩+ 1√

2
|11 · · · 1⟩ .

Supposing U100 = 1, we would also have

|θ101⟩ = |θ100⟩ .

Now suppose we compute the reduced density matrix of |θ101⟩ on 2 qubits:

Trall but 2 qubits[|θ101⟩ ⟨θ101|]

= Trall but 2 qubits

[
1

2
|0 · · · 0⟩⟨0 · · · 0|+ 1

2
|1 · · · 1⟩⟨1 · · · 1|+ 1

2
|0 · · · 0⟩ ⟨1 · · · 1|+ 1

2
|1 · · · 1⟩ ⟨0 · · · 0|

]
=

1

2
|00⟩⟨00|+ 1

2
|11⟩⟨11| .

What we end up with is two perfectly-correlated qubits (and the same applies for any constant
number of qubits). Now consider a different quantum state |θ′101⟩ (which can be obtained by simply
applying a Z on |θ100⟩), ∣∣θ′101〉 = 1√

2
|00 · · · 0⟩ − 1√

2
|11 · · · 1⟩ ,

and trace out all but 2 qubits:

Trall but 2 qubits[
∣∣θ′101〉 〈θ′101∣∣]

= Trall but 2 qubits

[
1

2
|0 · · · 0⟩⟨0 · · · 0|+ 1

2
|1 · · · 1⟩⟨1 · · · 1| − 1

2
|0 · · · 0⟩ ⟨1 · · · 1| − 1

2
|1 · · · 1⟩ ⟨0 · · · 0|

]
=

1

2
|00⟩⟨00|+ 1

2
|11⟩⟨11|

= Trall but 2 qubits[|θ101⟩ ⟨θ101|].

57

What this shows is that even though |θ101⟩ and |θ′101⟩ are different quantum states, locally they
look exactly the same! So there is no local Hamiltonian instance that accepts one but rejects the
other - this is called local indistinguishability and shows that we cannot directly adapt the proof of
the classical Cook-Levin theorem to the quantum case. The way we can resolve this is using the
Feynman-Kitaev clock construction.

12.2 Feynman-Kitaev Clock Construction

To solve our problem from before, introduce a new register C (the “clock” register) and define

|ζ⟩ = 1√
2
(|θ100⟩ ⊗ |1⟩C + |θ101⟩ ⊗ |2⟩C) .

If |θ100⟩ = |θ101⟩, this simplifies to

|ζ⟩ = 1√
2
|θ100⟩ ⊗ (|1⟩+ |2⟩)C .

Also define a Hamiltonian
H = 1⊗ (|1⟩ − |2⟩)(⟨1| − ⟨2|)C .

What is the energy of |ζ⟩ with respect to H? Notice that (|1⟩+ |2⟩) is orthogonal to (|1⟩ − |2⟩), so
the energy is zero!

⟨ζ|H |ζ⟩ = 0.

But in general,

⟨ζ|H |ζ⟩ = 1− ⟨θ100|θ101⟩
2

,

which means that the energy of |ζ⟩ is 0 when |θ100⟩ and |θ101⟩ are the same, and higher when they
are different. Importantly, the Hamiltonian H only acted non-trivially on the one qubit in the C
register; this is how we can locally check that the quantum state did not change.

Now we are ready to describe the general Feynman-Kitaev clock construction. Given a circuit
of T steps of computation, say,

UTUT−1 · · ·U1 |x⟩ ⊗ |ψ⟩ ,
the construction is the following history state as an analog of |ζ⟩:

|history state⟩ = 1√
T + 1

T∑
t=0

UtUt−1 · · ·U1 |x⟩ ⊗ |ψ⟩ ⊗ |t⟩C .

The Hamiltonian can now be defined as:

H = Hinit +Hpropagation +Hcheck,

where
Hinit = |0⟩⟨0|C ⊗

∑
i

|x̄i⟩⟨x̄i|

enforces that we have the right input at time step 0 (here, x̄i = 1− xi), and

Hcheck = |T ⟩⟨T |C ⊗ |0⟩⟨0|O
enforces that the output qubit is not in the 0 state. We will discuss the Hpropagation Hamiltonian,
along with a completeness and soundness proof, in the next lecture.

58

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 13

March 9, 2022 Scribes: Chi-Ning Chou

Today’s lecture notes are on the following topics:

• Clock construction.

• Applications.

• Examples.

• Proofs.

13.1 Clock Construction

Recall that in the last lecture we wanted to show that the 5-local Hamiltonian problem is QMA-
hard. And we ended up with a glimpse into the Feynman-Kitaev clock construction, which is a key
step for proving this theorem.

13.1.1 History states

Given a quantum circuits with gates U1, U2, . . . , UT and an input state |in⟩, the history state is
defined as

|history⟩ := 1√
T + 1

T∑
t=0

|t⟩C ⊗ UtUt−1 · · ·Ut |in⟩ (13.1)

where U0 = I is used here for notational simplicity and |·⟩C stands for the “clock register”1. We are
going to see how |history⟩ can be treated as a quantum proof for faithfully executing the circuit.
But before that, let’s take a step back to see how QMA and other related complexity classes fit
into the notations we are using here. In particular, we will see what are the corresponding circuits
U = UT · · ·U1 and input states |in⟩.

• (QMA) Given a QMA problem, there will be a verifier algorithm V which takes the input
x ∈ {0, 1}n of the problem, m = poly(n) ancilla qubits, a quantum state |ψ⟩ (which serves as
a proof/witness). So we naturally pick the circuit U to be the verifier circuit V and

|in⟩ = |x⟩ ⊗ |ψ⟩ ⊗ |0⟩⊗m .

• (BQP) Given a BQP problem, there will be a quantum circuit C which takes the input
x ∈ {0, 1}n of the problem and m = poly(n) ancilla qubits. So we naturally pick U to be C
and

|in⟩ = |x⟩ ⊗ |0⟩⊗m .
1There’s a tricky issue about how to properly encode the time to make sure the Hamiltonian can be made local,

but in this lecture for simplicity we will ignore that.

59

• (MA) Given a MA problem there will be a classical circuit C which takes the input x ∈ {0, 1}n
of the problem, some uniform random bits r ∈ {0, 1}ℓ, and a classical proof w ∈ {0, 1}k. Here
we can use multiple EPR pairs to prepare the random bits2. Concretely, we can pick U to be
the quantum version of C and

|in⟩ = |x⟩ ⊗
(
|00⟩+ |11⟩√

2

)⊗ℓ
⊗ |w⟩ ⊗ |0⟩⊗m .

where the extra |0⟩⊗m is the ancilla qubits that might appear when we quantize C.

13.1.2 Clock Hamiltonian

Given a QMA problem with verifier circuit U , an input x ∈ {0, 1}n, and a proof state |ψ⟩, our goal
is to construct (in polynomial time) a local Hamiltonian Hclock with the following properties:

• (completeness) if Pr[U(x, |ψ⟩)] > 1− e−Θ(n) (i.e., x is a Yes instance), then

0 ≤ E1(Hclock) ≤ tr(|history⟩⟨history|Hclock) < e−Θ(n)

i.e., the ground state energy of Hclock is inverse exponentially small.

• (soundness) if Pr[U(x, |ψ⟩)] < e−Θ(n) (i.e., x is a No instance), then

E1(Hclock) = Ω

(
1

T 3

)
where T is the running time of U . Namely, the ground state energy of Hclock is at least inverse
polynomially large.

Note that if we can show the above two properties, we essentially show that local Hamiltonian
is QMA-hard as desired.

In the rest of this lecture, we will first have a quick digression on the applications of the ideas
used in the proof to other problems in quantum complexity and quantum computation. Then, we
will present the full construction of Hclock and provide a proof sketch.

13.2 Applications

There are several applications of the clock construction beyond its original motivation in proving
the QMA-hardness of local Hamiltonian problem:

• Adiabatic quantum computing is a model for realizing quantum computation. Instead of
applying quantum gates, we let the quantum system to evolve by a given Hamiltonian specified
according to the input of the computational problem. Through the clock construction, one
can then transform any BQP algorithm into a Hamiltonian and set up an adiabatic quantum
computing system.

2Concretely, we use the first qubit of an EPR pair as a classical random bit and leave the second qubit untouched.
At the end when partial trace out the the second qubit, the first qubit behaves exactly as a uniform classical bit.

60

• Verification of quantum computing is an important and non-trivial task since a direct classical
simulation of a quantum algorithm has exponential overhead in time. Recent breakthrough in
classical verification of quantum computing by Mahadev [Mah18] used the clock construction.

• Volume law entanglement: Understanding the ground states of local hamiltonians is an old
pursuit in physics. The amount of entanglement is a standard measure of the complexity of
the ground state. QMA completeness local hamiltonians exhibit high amount of entanglement
(called volume law entanglement), as shown in [GH10, Ira10, AHL+14]

• Zero-knowledge protocol: Clock construction is crucial in the known zero-knowledge protocols
for QMA [BG20].

13.3 Construction

Let’s now take a look at the details of the clock construction. Recall that we want two things for
our final Hamiltonian Hclock: (i) when the circuit U accepts |in⟩, the history state |history⟩ should
have small energy w.r.t. Hclock; (ii) when the circuit U rejects |in⟩, the ground state energy of
Hclock should be large.

To achieve (i), we would like to construct some local Hamiltonian to guarantee a few things
(i-a) check if |history⟩ is indeed built for the input x; (i-b) check if |history⟩ indeed encodes the all
the intermediate computational steps on U |in⟩; (i-c) check if U indeed accepts |in⟩. As previewed
in the previous lecture, we will do this by constructing three local Hamiltonian Hinit, Hprop, Hcheck

for (i-a), (i-b), and (i-c) respectively and let

Hclock = Hinit +Hprop +Hout .

As a remark, the Hamiltonian Hclock can only depend on x and U and cannot use the proof |ψ⟩.
Nevertheless, the history state |history⟩ can use |ψ⟩.

The following table summarizes the high-level picture of the reduction from any QMA problem
L to the local Hamiltonian problem.

A QMA problem L with circuit U Local Hamiltonian Problem

Input x Hclock

Proof |ψ⟩ |history⟩
Yes ∃ |ψ⟩ , Pr[U accepts (|x⟩ , |ψ⟩)] > 1− e−Θ(n) E1(Hclock) < e−Θ(n)

No ∀ |ψ⟩ , Pr[U accepts (|x⟩ , |ψ⟩)] < e−Θ(n) E1(Hclock) = Ω
(

1
T 3

)

13.3.1 Hprop

For (i-b), we would like to construct a local Hamiltonian Hprop so that |history⟩ is a ground state.
Note that we cal always easily construct a Hamiltonian using the whole circuit U so that |history⟩
is a ground state, but such a straightforward construction won’t be local. So the key is really about
how to build several local Hamiltonians that locally verify the computation at time t+ 1 from the
computation at time t.

61

Step 1: Trivial circuit U . But anyway let’s take a step back and first think about the base case
where T = 1 and U = I is the identity circuit. How to build a Hamiltonian so that |history⟩ =
1√
2
(|0⟩C ⊗ |in⟩+ |1⟩C ⊗ |in⟩) is the ground state? The following local Hamiltonian turns out to be

sufficient!
H0 = (|0⟩ − |1⟩)(⟨0| − ⟨1|)C ⊗ I . (13.2)

The reason is that the energy of H0 on 1√
2
(|0⟩C ⊗ |in⟩+ |1⟩C ⊗ |θ⟩) is 1− ⟨in|θ⟩ for any state |θ⟩.

It will be a good exercise for you to verify this claim and see the footnote for a proof 3.

Step 2: Single gate circuit U . Next, let’s consider the case where U contains a single gate
u, i.e., U = u × I, so we have |history⟩ = 1√

2
(|0⟩C ⊗ |in⟩ + |1⟩C ⊗ U |in⟩). How to build a local

Hamiltonian H1 so that the above |history⟩ is the ground state? Note that we can first rewrite
|history⟩ as follows.

|history⟩ =W

[
1√
2
(|0⟩C ⊗ |in⟩+ |1⟩C ⊗ |in⟩)

]
where W = |0⟩⟨0|C ⊗ I + |1⟩⟨1|C ⊗ U is a unitary matrix. Thus, the following choice of H1 suffices!

H1 =WH0W
†

where H0 is from Equation 13.2. It’s a good exercise to check why |history⟩ is the ground state of
H1 and see the footnote for a proof4. Let’s further open up H1 as follows.

H1 =WH0W
†

=W [(|0⟩ − |1⟩)(⟨0| − ⟨1|)C ⊗ I]W †

= |0⟩⟨0|C ⊗ I + |1⟩⟨1|C ⊗ I − |0⟩ ⟨1|C ⊗ U
† − |1⟩ ⟨0|C ⊗ U . (13.3)

Note that Equation 13.3 is quite “interpretable” in the sense that we can think of H1 contains four
“paths”: 0 → 0, 1 → 1, 0 → 1, and 1 → 0 where the first two has “weight” I, the third one has
weight U †, and the last one has weight U . In particular, each “weight” is a local Hamiltonian.

Step 3: General T gates circuit U . Finally, when U contains of gates u1, u2, . . . , uT , the
history state becomes

|history⟩ = 1√
T + 1

(
|0⟩C ⊗ |in⟩+

T∑
t=1

|t⟩C ⊗ (UtUt−1 · · ·U1) |in⟩

)
where Ut = ut⊗I. Now the question is, how to construct a local Hamiltonian HT so that the above
|history⟩ is its ground state? Given Equation 13.3 and its “interpretation”, it is natural to pick
the following Hamiltonian.

HT =
T∑
t=1

[
|t− 1⟩⟨t− 1|C ⊗ I + |t⟩⟨t|C ⊗ I − |t− 1⟩ ⟨t|C ⊗ U

†
t − |t⟩ ⟨t− 1|C ⊗ Ut

]
. (13.4)

3Let |ψ⟩ = 1√
2
(|0⟩C ⊗ |in⟩ + |1⟩C ⊗ |θ⟩), the energy of H on |ψ⟩ is ⟨ψ|H |ψ⟩ = ⟨ψ| (|0⟩⟨0| ⊗ I) |ψ⟩ + ⟨ψ| (|1⟩⟨1| ⊗

I) |ψ⟩ − ⟨ψ| (|0⟩ ⟨1| ⊗ I) |ψ⟩ − ⟨ψ| (|1⟩ ⟨0| ⊗ I) |ψ⟩ = 1
2
(1 + 1− ⟨in|θ⟩ − ⟨in|θ⟩) = 1− ⟨in|θ⟩.

4From Step 1, we know that H0 |ψ⟩ = 0 where |ψ⟩ = 1√
2
(|0⟩C ⊗ |in⟩+ |1⟩C ⊗ |in⟩). Note that |history⟩ = W |ψ⟩.

As W is unitary, we have H1 |history⟩ =WH0W
† |history⟩ =WH0W

†W |ψ⟩ =WH0 |ψ⟩ = 0.

62

Note that we literally replace 0→ t− 1, 1→ t, and U → Ut from Equation 13.3 for each t and sum
them up.

So now if we pick Hprop = HT where HT is from Equation 13.4, we will have the history state
|history⟩ from Equation 13.1 being its ground state for any input state |in⟩ (note that the choice
of |history⟩ depends on |in⟩). This seems good but wait a second, if the verifier gives us a history
state |history′⟩ that does not have anything to do with our input state |in⟩, |history′⟩ will still be
the ground state of Hprop and hence we will always accept it! Namely, we need to make sure the
history state indeed encodes the computation history of |in⟩ and this can be handled by Hinit in
the next step.

13.3.2 Hinit

Recall that the input state for a QMA problem is of the form

|in⟩ = |x⟩ ⊗ |ψ⟩ ⊗ |0⟩⊗m

where x ∈ {0, 1}n is the classical input the the problem, |ψ⟩ is a quantum proof, and |0⟩⊗m is the
ancilla qubits. Note that |x⟩ and |0⟩⊗m are the part that have to be fixed, i.e., we want to make
sure that the |in⟩ in the history state |history⟩ sent by the quantum prover has its first part exactly
being |x⟩ and the third part exactly being |0⟩⊗m.

Let’s start with a simpler task: how to construct a local Hamiltonian Hx so that x is its ground
state? The following naturally works!

Hx =
n∑
i=1

|x̄i⟩⟨x̄i|

where x̄i = 1− xi. The reason why we have to negate/complement each bit is that here a ground
state minimizes the energy.

So to check the validity of |in⟩ via local Hamiltonian, we simply construct a local Hamiltonian

Hinit =

n∑
i=1

|x̄i⟩⟨x̄i| ⊗ I +
m∑
j=1

|1⟩⟨1| ⊗ I

where the first sum makes sure the classical input register is |x⟩ and the second sum makes sure
the ancilla register contains |0⟩⊗m.

13.3.3 Hout

Note that Hinput +Hprop has history states of the following form as ground states

1√
T + 1

T∑
t=0

|t⟩C ⊗ UtUt−1 · · ·Ut(|x⟩ ⊗ |ψ⟩ ⊗ |0⟩⊗m)

for every |ψ⟩. Namely, the subspace of the ground states of Hinput + Hprop is captured by the
following projective operator

Πgs = span

{
1√
T + 1

T∑
t=0

|t⟩C ⊗ UtUt−1 · · ·Ut(|x⟩ ⊗ |ψ⟩ ⊗ |0⟩⊗m) : ∀ |⟩ψ

}
.

63

Finally, we would like to construct the last local Hamiltonian Hcheck to check whether the QMA
circuit U indeed accepts |x⟩ and |ψ⟩. As we already have |T ⟩C ⊗ UT · · ·U1 |in⟩ inside |history⟩,
we can simply “read out” the output probability of U evaluating on (|x⟩ , |ψ⟩) using the following
Hamiltonian.

Houtput = |T ⟩⟨T |C ⊗ |0⟩⟨0|O ⊗ I

where O stands for the output register, i.e., without loss of generality being the first output qubit
of U .

In summary, we have constructed local Hamiltonians Hinit, Hprop, Houtput and we will let

Hclock = Hinit +Hprop +Houtput

to be our final local Hamiltonian.

13.4 Proof Sketch

The completeness part of the theorem is straightforward: throughout the construction we have
guaranteed |history⟩ to be the ground state of Hinit, Hprop, and Houtput as long as x is a Yes
instance and |ψ⟩ is a valid proof. To see the ground state energy is exponentially small, observe
that the only “contribution to the energy” comes from the error probability of U accepting (|x⟩ , |ψ⟩).
As the error probability is exponentially small, the ground state energy is also exponentially small.
We will go into more details in the next lecture.

The soundness of the theorem is the difficult part. The analysis involves quantum random walks
and Jordan lemma. We will give a proof sketch in the next lecture.

64

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 14

March 11, 2022 Scribe: Xiaomin Li

Today’s lecture notes are on the following topics:

• Final analysis of clock construction

• Marriott Watrous protocol (Zombie story that ends well)

14.1 Final Analysis of Clock Construction

14.1.1 Review

Recall from last lecture that we defined the history state:

|history⟩ := 1√
T + 1

T∑
t=0

|t⟩C ⊗ UtUt−1 · · ·U0 |in⟩ (14.1)

where U0 := I. For a language L in the class QMA, write |in⟩ = |x⟩ ⊗ |ψ⟩, where x is the string
whose membership in L is to be decided and |ψ⟩ is the associated witness of membership. We also
constructed the clock Hamiltonian:

Hclock = Hin +Hprop +Hout,

where

Hin = |0⟩⟨0|C ⊗
n∑
i=1

|x̄i⟩⟨x̄i| (where n = |x|) (14.2)

Hprop =
T∑
t=1

[
|t⟩⟨t|C ⊗ I + |t− 1⟩⟨t− 1|C ⊗ I − |t⟩ |t− 1⟩C ⊗ Ut − |t− 1⟩ ⟨t|C ⊗ U

†
t

]
(14.3)

Hout = |T ⟩⟨T |C ⊗ |0⟩⟨0|O . (14.4)

and the ground states of Hin +Hprop is the following projective operator

Πgs projects on span

{
1√
T + 1

T∑
t=0

|t⟩C ⊗ UtUt−1 · · ·Ut(|x⟩ ⊗ |ψ⟩) : ∀ |ψ⟩

}
. (14.5)

For the details of the construction above, please refer back to the scribe notes for Lecture 13.
Recall that we want to show that local Hamiltonian is QMA-hard. Hence we would like to prove
the following theorem.

Theorem 14.1.1. If there exists |ψ⟩ such that P[accept] ≥ 1 − e−n (in this case, x ∈ L), then

E1(Hclock) ≤ O(e
−n

T+1) (and the history state achieves this). If for all |ψ⟩ we have P[accept] ≤ e−n

(in this case, x /∈ L), then E1(Hclock) = Ω(1
T 3).

65

14.1.2 Prove Completeness

In the case x ∈ L, we focus on the first claim (completeness) in the theorem. Note that in our
construction, |history⟩ is the ground state of Hin +Hprop. When we apply Hout on |history⟩, we
get the projection on the part of |history⟩ which rejects. In the assumption of the first claim of the
theorem, we have that the acceptance probability is at least 1− e−n, so the rejection probability is
at most 1− (1− e−n) = e−n. This implies that

⟨history|Hclock |history⟩ = ⟨history|Hin +Hprop |history⟩+ ⟨history|Hout |history⟩

≤ 0 +
1

(
√
T + 1)2

· e−n

= O(
e−n

T + 1
).

This finishes the proof for completeness. Next, we focus on the proof of the second claim
(soundness).

14.1.3 Prove Soundness

The proof of soundness consists of two parts. We show in Lemma 14.1.2 below that Hin+Hprop ≥
Ω(1

T 2)(I − Πgs). (Recall from (14.5) that the Hamiltonian Πgs corresponds to the ground space
(the zero eigenvalue subspace), so I −Πgs corresponds to the nonzero eigenvalues subspace.) Then
in Lemma 14.1.3 below, we claim that Hout + (I − Πgs) ⪰ Ω(1

T)I. Combining these two lemmas
implies that

Hclock = Hin +Hprop +Hout ⪰ Ω(
1

T 2
)(I −Πgs) +Hout (by Lemma 14.1.2)

⪰ Ω(
1

T 2
)(I −Πgs +Hout) (since 1 ≥ 1

T 2
)

⪰ Ω(
1

T 3
)I (by Lemma 14.1.3).

This implies E1(Hclock) = Ω(1
T 3), which completes the proof of the theorem. Therefore, it suffcies

to prove the two lemmas below. We only provide a brief sketch of the proofs. One can find the
details in the survey by Aharonov and Naveh [AN02].

Lemma 14.1.2. Hin +Hprop ⪰ Ω(1
T 2)(I −Πgs)

Proof sketch. LetHin+Hprop have eigen-decompositionQΛ1Q
−1 and I−Πgs have eigen-decomposition

QΛ2Q
−1. Denote the eigenvalues of Hin +Hprop in ascending order: λ0, λ1, λ2, . . . (λ0 = 0 and λ1

is the second smallest eigenvalue). In matrix forms, we have

Λ1 =

. . .

λ3
λ2

λ1
0

 , Λ2 =

. . .

1
1

1
0

 .

66

Then

Λ1 ⪰

. . .

λ1
λ1

λ1
0

 = λ1

. . .

1
1

1
0

 = λ1(I −Πgs)

Now it suffices to show that λ1 = Ω(1
T 2), where λ1 is the second eigenvalue of Hin +Hprop.

The hard part of the remainder of the proof is to study the eigenvalues of Hprop, where we
will use the theory of random walks. We apply rotations on Hprop because the eigenvalues will
not change if we look at Hprop in a rotated basis. That is, the eigenvalues R†HpropR has the same
eigenvalues with Hprop, for a rotation matrix R. Particularly, we choose to define R as

R :=
T∑
t=0

Ut · · ·U1U0 ⊗ |t⟩⟨t| ,

then it gives

R†HpropR =
T∑
t=1

(|t⟩⟨t|C + |t− 1⟩⟨t− 1|C − |t⟩ |t− 1⟩C − |t− 1⟩ ⟨t|C)⊗ I,

and the terms inside the sum are related to the stochastic matrix corresponding to a simple random
walk from 0 to T with loops on the start and end points. Then we can apply the related theory to
finish the analysis of the eigenvalues of Hprop.

Lemma 14.1.3. Hout + (I −Πgs) ⪰ Ω(1
T)I

Proof sketch. Use Π0 to denote Hout and use Π1 to denote I − Πgs. Both of them are projectors
by definition. We will derive a lower bound Ω(1

T) for all the eigenvalues of Π0 + Π1, by using the
Jordan’s Lemma.

Recall that by Jordan’s Lemma, we can decompose the entire space into 1-dimensional or
2-dimensional subspaces which are invariant under both projectors Π0 and Π1 (so in the eigende-
composition we have a block-diagonal form where each block has shape 1 × 1 or 2 × 2). In each
2-dimensional subspace, Π0 and Π1 are rank-1 projectors. More precisely, we can find vectors |u⟩
and |v⟩ such that Π0 projects on |u⟩ and Π1 projects on |v⟩. Suppose the angle between those two
vectors is θ. Please see the graph below:

67

Note that θ is a nonzero angle. Why? If we draw the orthogonal vector of |v⟩, then it is just
corresponding to the projector Πgs, because we defined Π1 := I − Πgs. Suppose θ = 0, then |u⟩
aligns with |v⟩ and the vectors Πgs projects on are orthogonal to |u⟩. From (14.5) we know that
all the vectors Πgs projects on have the form of the history states. If they are orthogonal to |u⟩,
then it means they have 0 energy on Π0 = Πout. This is a contradiction because

⟨history|Hout |history⟩ ≥
1

(
√
T + 1)2

· (1− e−n) > 0

by the assumption in the second claim of Theorem 14.1.1.
Then we can deduce a desired lower bound on the nonzero angle θ and this further gives a lower

bound on the eigenvalues of Π0+Π1. We will not present the details here, but one can refer to the
survey by Aharonov and Naveh [AN02].

14.2 Marriott Watrous Protocol

14.2.1 Amplification of QMA

The MAc,s protocol is described as follows.

(Completeness) x ∈ L =⇒ ∃yPr[V (x, y) = 1] = c

(Soundness) x ̸∈ L =⇒ ∀yPr[V (x, y) = 1] ≤ s.

Verifier
y←−−−−−−−−

|y|=poly(|x|)
Prover

Now we want amplify the completeness-soundness gap c− s such that c→ 0.99 and s→ 0.01. One
strategy is to run the algorithm N times and accept only if we get the output 1 from the verifier
more than N c+s

2 times. We expect N = Θ(1
(c−s)2) by the Chernoff bound. For QMA protocol, we

define cx and sx (as functions of x) as follows.

(Completeness) x ∈ L =⇒ cx := max
|ψ⟩

Pr[V (x, |ψ⟩) = 1]

(Soundness) x ̸∈ L =⇒ sx := max
|ψ⟩

Pr[V (x, |ψ⟩) = 1].

Verifier
|ψ⟩←−−−−−−−−−−−−−−

on poly(|x|) qubits
Prover

We call the algorithm above Ax. Pondering about the interpretation for cx and sx will convince us
that the definitions above are correct (thinking in the example of 3SAT might be helpful). When
x ∈ L, there exists some proof |ψ⟩ such that V (x, |ψ⟩) = 1. For completeness, we only care about
the valid proofs, so we defined cx := max|ψ⟩ Pr[V (x, |ψ⟩) = 1] and we want cx to be as large as
possible. On the other hand, when x /∈ L, we want that for all the proofs given to the verifier, the

68

probability of accepting is low. Hence we defined sx := max|ψ⟩ Pr[V (x, |ψ⟩) = 1] and want sx to be
as low as possible.

For the amplification of QMA (for example, from QMAc,s to QMA0.99,0.01), we can use the
same approach as for the amplification of MA, by running the verification N times. However, after
measurement, our quantum state become useless, so we need N copies of |ψ⟩ for this approach.
Instead, we will introduce a protocol by Marriott and Watrous, which only uses one copy of |ψ⟩ to
accomplish the amplification.

14.3 Marriott-Watrous Protocol

Theorem 14.3.1 (MW05). There is a procedure that uses one copy of |ψ⟩ and makes N = O(1
(c−s)2)

calls to Ax, A−1
x (with measurements), such that if x ∈ L, then it accepts with probability 0.99 and

if x /∈ L, then it accepts with probability 0.01.

We will discuss this protocol in details in the next lecture. Here are some applications of the
Marriott-Watrous protocol:

• Quantum Cryptography [Wat06].

• Quantum Signal Processing.

• Quantum Walks.

• Black Holes [YK17].

69

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 15

March 23, 2022 Scribe: Justin Mack

15.1 Lecture Plan

Goals

1. Finish Marriott-Watrous Discussion

2. Discuss Hamiltonian Simulation

15.2 Marriot-Watrous Protocol

15.2.1 Overview

Recall that the setting for Marriott-Watrous is amplification. Quantum Merlin-Arthur is a class
where a prover sends a proof x to a verifier. The verifier then performs some quantum algorithm
for measurement and accepts the proof with probability ≥ c if x belongs to a language L – this is
called completeness – and accepts the proof with probability ≤ s if x does not belong to L – this
is called soundness.

Paccept =

{
≥ c, x ∈ L
≤ s, x /∈ L

The goal of Marriot-Watrous is to increase the difference between c and s. For a long time, people
thought the only way to do this was to have the prover send multiple copies of the witness, because
the information was lost when it was measured by the verifier. However, the Marriott-Watrous
protocol uses just one copy of the witness to perform this amplification.

15.2.2 The Verifier Circuit

Specification

We have a circuit V that depends on x, so we write Vx – this is the verifier circuit. It takes as
input in register A the witness state |ψ⟩A. It also takes the ancillary input |0⟩B in register B. After
performing some quantum computation on these inputs, the circuit then measures a certain output
qubit in register X in the {|0⟩ , |1⟩} basis, where |0⟩ and |1⟩ correspond to the reject and accept
states, respectively. The remaining output is stored in a register D.

70

The verifier circuit has the property that if we have x ∈ L there exists a witness such that it accepts
with probability at least c. It also has the property that if we have x /∈ L for all witnesses it accepts
with probability at most s.

x ∈ L =⇒ ∃ |ψ⟩P [Vx(|ψ⟩) = |0⟩] = c.

x ∈ L =⇒ ∀ |ψ⟩P [Vx(|ψ⟩) = |0⟩] ≤ s.

Ancillary Registers

Claim
Without ancillaries, there is always a state |ψ⟩ such that the verifier circuit is guaranteed to accept.
Argument
Imagine we have a circuit Vx with only the input |ψ⟩. Our goal is to set the output register C to
|1⟩ so the circuit always accepts, and we don’t care about the outputs in D, so the desired input
state lives in the subspace

|1⟩⟨1|C ⊗ 1D.
On any such output state, we can apply the circuit in reverse

|ψ⟩ = V −1
x (|1⟩⟨1|C ⊗ 1D)Vx.

Basically, we can find an input that always outputs |1⟩ by setting C to |1⟩, D to anything, and
reversing the circuit. In this case, it doesn’t matter what x is because c and s will both always be
1.
To get around this issue, we add an ancilliary |0⟩. The difference is that if we try to apply the
circuit in reverse we might get a different value for the ancillary, which will make that state an
invalid input to the circuit.

The Input Sets

We are interested in the set of states that are always accepted by the circuit. Let’s call this set Π1,
which is a subspace of the Hilbert space HA ⊗HB.

Π1 ⊆ HA ⊗HB.

Π1 is defined as the following projector for the same reasons discussed in the ancillary registers
section. We start with our desired output and run the circuit in reverse to define the set of accepted
inputs.

Π1 = V −1
x (|1⟩⟨1|C ⊗ 1D)Vx.

71

We can see that Π1 is a projector because if you square it you get back the same value

V −1
x (|1⟩⟨1|C ⊗ 1D)VxV

−1
x (|1⟩⟨1|C ⊗ 1D)Vx.

= V −1
x (|1⟩⟨1|C ⊗ 1D)(|1⟩⟨1|C ⊗ 1D)Vx.

= V −1
x (|1⟩⟨1|C |1⟩⟨1|C ⊗ 1D1D)Vx.

= V −1
x (|1⟩⟨1|C ⊗ 1D)Vx.

We are also interested in the set of states that are considered valid inputs to the circuit. Let’s call
this set Π2, which is also a subspace of the Hilbert space HA ⊗HB.

Π2 ⊆ HA ⊗HB.

Π2 is defined as the set of states where register A can be any state and register B is |0⟩, as these
define all valid inputs to the circuit.

Π2 = 1A ⊗ |0⟩⟨0|B .

15.2.3 The Marriott-Watrous Theorem

Remember that our goal is to amplify the difference between c and s. The natural approach requires
an increase in the length of the message due to the no-cloning theorem, but the remarkable aspect
of Marriott-Watrous is that it showed there is a way to perform the amplification without this
additional input.

Theorem 15.2.1. There is a protocol which takes one witness |ψ⟩ and makes N = O
(

1
(c−s)2

)
calls

to the circuits Vx and V −1
x , such that if x ∈ L the circuit accepts with probability 0.99 and if x /∈ L

the circuit accepts with probability 0.01.

Comparison with Classical

In the classical case, the prover sends a proof string y to the verifier. The verifier then runs the

verification circuit N = O
(

1
(c−s)2

)
times, and checks if the number of accepts is at least N · (c+s)2 .

If so, they accept, and if not they reject.

15.2.4 Specifying the Protocol

The protocol input is |ψ⟩A ⊗ |0⟩B .

Step 1

Measure the current state in the basis {Π1,1−Π1}. If the outcome is Π1 we output the bit 1, and
if the outcome is 1−Π1 we output the bit 0.

Step 2

Measure the current state in the basis {Π2,1−Π2}. If the outcome is Π2 we output the bit 1, and
if the outcome is 1−Π2 we output the bit 1.

72

Step 3

Repeat the previous steps N times.

Step 4

Look at the 2N output bits. Let’s say for instance we got the output string

0011101011.

To decide whether to accept or reject, we scan the string from left to right and count the number
of times that the bit does not change value. To be more specific, you count the changes between
the (2i− 1)-th and the 2i-th bit. If this number is at least N(c+ s) we accept, but if it is less than
N(c+ s), then we reject.

15.2.5 Understanding the Protocol

Claim 1

Given a state |ψ⟩A ⊗ |0⟩B, the probability of acceptance is given by

Paccept = tr ((|ψ⟩⟨ψ|A ⊗ |0⟩⟨0|B)Π1) .

To show that this is true, let’s plug in for Π1.

tr
(
(|ψ⟩⟨ψ|A ⊗ |0⟩⟨0|B)V

−1
x (|1⟩⟨1|A ⊗ 1B)Vx

)
.

We then use the property that the trace keeps matrices cyclic to write

tr
(
Vx (|ψ⟩⟨ψ|A ⊗ |0⟩⟨0|B)V

−1
x (|1⟩⟨1|A ⊗ 1B)

)
.

The first term Vx (|ψ⟩⟨ψ|A ⊗ |0⟩⟨0|B)V −1
x is the output state of the circuit when the input is |ψ⟩A⊗

|0⟩B, and the second term (|1⟩⟨1|A ⊗ 1B) is the projector onto the accepting inputs. Phrased
differently, we are taking the input state, getting the corresponding output state, and measuring
the desired register – giving us the acceptance probability.
The other way to interpret this is to look at the input side rather than the output side.

(|ψ⟩⟨ψ|A ⊗ |0⟩⟨0|B)Π1.

We can interpret this entire expression as the overlap between the set of valid inputs and the set of
accepting inputs – the higher this overlap the higher the probability of acceptance on an arbitrary
input state.

Claim 2

The maximum acceptance probability is the largest eigenvalue of the operator

Π2Π1Π2.

73

We can first show mathematically why this is the case

max
|ψ⟩

Paccept = max
|ψ⟩

tr ((|ψ⟩⟨ψ|A ⊗ |0⟩⟨0|B)Π2Π1Π2) .

max
|ψ⟩

Paccept = max
|ψ⟩

tr ((|ψ⟩⟨ψ|A ⊗ |0⟩⟨0|B) (1A ⊗ |0⟩⟨0|B)Π1Π2) .

max
|ψ⟩

Paccept = max
|ψ⟩

tr ((|ψ⟩⟨ψ|A ⊗ |0⟩⟨0|B)Π1Π2) .

Applying the cyclic property

max
|ψ⟩

Paccept = max
|ψ⟩

tr (Π2 (|ψ⟩⟨ψ|A ⊗ |0⟩⟨0|B)Π1) .

max
|ψ⟩

Paccept = max
|ψ⟩

tr ((1A ⊗ |0⟩⟨0|B) (|ψ⟩⟨ψ|A ⊗ |0⟩⟨0|B)Π1) .

max
|ψ⟩

Paccept = max
|ψ⟩

tr ((|ψ⟩⟨ψ|A ⊗ |0⟩⟨0|B)Π1) .

We can see that this result is the same as the probability of acceptance expression we proved in
Claim 1, except we are taking the maximum over all valid input states.
Application of Jordan’s Lemma
Let’s now talk about the operator

Π1Π2.

We can use Jordan’s Lemma to decompose this operator. This gives us an orthonormal basis with
the following properties.

1. For both Π1 and Π2, the matrix form under this basis is the block diagonal with either 1-D
or 2-D blocks.

2. In each 2-D block, both Π1 and Π2 have dimension 1. In other words, in that block we know
that Π1 is |w⟩⟨w| and Π2 is |v⟩⟨v|.

Thus, by choosing
∣∣w⊥〉 (resp. ∣∣v⊥〉) that is orthonormal to |w⟩ (resp. |v⟩), we get an orthonormal

basis {|w⟩ ,
∣∣w⊥〉} (resp. {|v⟩ , ∣∣v⊥〉}) for this block.

74

Zoom in on these blocks, we have a component |v⟩ ∈ Π1, and a component |ψ⟩A ⊗ |0⟩B ⊆ Π2.
An important note is that |ψ⟩A ⊗ |0⟩B – the component of Π2 within the Jordan blocks – is an
eigenvector of Π2Π1Π2.

The point of this is that if we have some valid input |ψ⟩A ⊗ |0⟩B ⊆ Π2, then its overlap with |v⟩ is
its projection onto |v⟩. Let’s say the two components are at an angle θ. In this case, we have that

Paccept(|ψ⟩A) = cos2(θ).

Focusing on the first block, we can project |ψ⟩A ⊗ |0⟩B onto |v⟩ as follows:

(Π2Π1Π2)within the block = (|ψ⟩ ⊗ |0⟩⟨ψ| ⊗ ⟨0|) (|v⟩⟨v|) (|ψ⟩ ⊗ |0⟩⟨ψ| ⊗ ⟨0|) .
(Π2Π1Π2)within the block = |⟨v|ψ⟩ |0⟩|2 |ψ⟩ ⊗ |0⟩ ⟨ψ| ⊗ ⟨0| .

The resulting constant |⟨v|ψ⟩ |0⟩|2 is the eigenvalue of the Π2Π1Π2 operator on this subspace. This
tells us that the block component overlaps (cos2(θ)) are equivalent to the eigenvalues of Π2Π1Π2.
To specify the eigendecompsition we have been discussing in math, we have

Π2Π1Π2 =
∑
i

Pψi
|ψi⟩ |0⟩⟨ψi| ⟨0|

where |ψi⟩ is the accept state after measuring in the {Π1,1−Π1} basis. We now narrow our focus
to some specific value of i.

Bringing it Home

We have proven our claims, and now we want to use these reach a final understanding of the
protocol. Let’s focus on just one of these blocks from the Jordan’s Lemma decomposition and see
what the protocol looks like. We start with our two components |w⟩ and |v⟩ at an angle θ from
each other.

75

In the first step of the protocol, the input is |w⟩ = |ψ⟩A⊗|0⟩B, and we measure in the {Π1,1−Π1}
basis – which is the same as the {|v⟩ ,

∣∣v⊥〉} basis.

When we perform the measurement, we get the accept state |v⟩ with probability cos2(θ). We’ll call
this Pψ, which means we reject with probability 1− Pψ.

Pψ = Paccept(|ψ⟩) = cos2(θ).

After this first measurement, we are either in the state |v⟩ or
∣∣v⊥〉, and we then measure in the

{|w⟩ ,
∣∣w⊥〉} basis.

76

We then continually repeat this process, so we basically just have the current state vector bouncing
randomly between the four states |v⟩ , |w⟩ ,

∣∣v⊥〉 , ∣∣w⊥〉. We can express this process using the
following diagram.

It become more apparent now why in step 4 of the protocol we analyze the output bit string by
looking at instances in which the bits did not change. From the diagram we can see that we don’t
change bits with probability Pψ, and we do change bits with probability 1 − Pψ. Therefore, by
counting the number of times the bit does not change we can estimate Pψ.

15.2.6 Conclusion

The main takeaway from this lecture is that the Marriott-Watrous protocol performs coin tosses
with heads and tails probabilities (Pψ, 1−Pψ) on an input |ψ⟩ |0⟩ which is an eigenstate of Π2Π1Π2.
In our homework, we will show that this still works for linear combinations of eigenstates.

15.3 Hamiltonian Simulation

15.3.1 Overview

Given a Hamiltonian H, a quantum state evolves as follows

H : ρ→ eiHtρe−iHt

You generally don’t have access to the Hamiltonian of matter, but you still want to be able to
perform that quantum evolution so you can simulate the properties of that matter. This is where
Hamiltonian simulation comes in.

15.3.2 Applications

• One application of Hamiltonian simulation is simulating the properties of exotic matter.

• Another application of Hamiltonian simulation is solving linear systems, with some caveats.

15.3.3 Goal

The goal of Hamiltonian simulations is, given H as input, to find a quantum circuit V that with
size polynomial in t (and some other factors) such that

V ρV † ≈ eiHtρe−iHt.

77

For our purposes, we can focus on pure states, because if we can approximate pure states then we
can always also approximate mixed states by decomposing them and approximating each of those
pure states individually.

V |ψ⟩ ≈ eiHt |ψ⟩ .

Sometimes ancillary registers are necessary, in which case we rewrite as

V ρ⊗ |0⟩⟨0|B V
† ≈ eiHtρAe−iHt ⊗ |. . .⟩⟨. . .|B .

15.3.4 Method 1: Trotter Method

This method applies only to a subset of Hamiltonians known as local Hamiltonians. It also has a
relatively high computation cost with an asymptotic runtime of O(t2) (there are also some other
factors). However, this is the more “physical” method, and physicists have been using it for many
years. We will discuss this method in greater detail in a future lecture.

15.3.5 Method 2: Phase Estimation with Quantum Walks

This method applied to a broader subset of Hamiltonians known as sparse Hamiltonians. It also
has the optimal runtime of O(t) (there are also some other factors). The method is inspired by
computer science and quantum walks, not physical sciences. Let’s say we have a Hamiltonian H
with the eigendecomposition

H =
∑
i

Ei |ϕi⟩⟨ϕi| .

In this case, if we apply eiHt to a state |ψ⟩, we can write |ψ⟩ in the eigenbasis of H and then apply
eiHt to get

eiHt |ψ⟩ =
∑
j

cje
iEjt |ϕj⟩ .

Given this, Hamiltonian simulation works as follows. We first treat |ϕi⟩ as an input and perform
phase estimation to get the value Ei. We then apply the number eiEit to the output state. Finally,
we uncompute to get the desired output, which is allowed because everything is unitary thus
allowing us to undo. The process mathematically looks like this

|ϕi⟩ → |ϕi⟩ |Ei⟩ → eiEit |ϕi⟩ |Ei⟩ → eiEit |ϕi⟩ .

However, we don’t know how to actually compute the phase Ei, because phase estimation requires
a unitary. It turns out that there exists a unitary called the quantum walk operator that contains
the necessary information about the eigenvalues of the Hamiltonian – allowing us to perform this
phase estimation. We will discuss this in more detail in a future lecture. We’ll also see that just
like we can transform any random walk process into a quantum walk, we can also transform a
Hamiltonian into a quantum walk operator.

78

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 16

March 25, 2022 Scribes: Vassilios Kaxiras

16.1 Today

1. Trotter method (Hamiltonian simulation)

2. Quantum Linear Systems

16.1.1 Recap

What is Hamiltonian simulation? Given a Hamiltonian H on n qubits, find

V ≈ eiHt (16.1)

We want the size (number of gates) of the quantum circuit V to be polynomial in n and t. Two
methods of getting V :

1. Trotter: for local Hamiltonians: requires O(t2) 2 qubit gates

2. Quantum walks: for sparse hamiltonians: requires O(t) circuit depth

16.2 Trotter method

Consider a 2-local Hamiltonian:

H =

m∑
α=1

bαPα, bα ∈ [−1, 1] (16.2)

H is 2-local if each Pα is a 2-qubit Pauli operator, which means it performs a Pauli operation on
at most 2 qubits, and the identity on the rest. For example, a possible H with m = 2(n − 1) (n
being the number of qubits) is

H =
n−1∑
i=1

(Xi ⊗Xi+1 + Zi ⊗ Zi+1)

Xi = 1⊗ 1⊗ · · ·X ⊗ 1⊗ · · ·1

(16.3)

Theorem 16.2.1. Given {bα, Pα}mα=1 and ϵ allowed error, you can efficiently construct a quantum
circuit V :

∥V − e−iHt∥∞ ≤ ϵ (16.4)

79

The size (in number of 2 qubit gates) is

O

(
m3t2

ϵ

)
(16.5)

with depth

O

(
m2t2

ϵ

)
(16.6)

Proof. Use the Suzuki-Trotter method:

1. Group {Pα}mα=1 into mutually commuting terms.

2. Evolve for tiny time eiδH , δ small.

3. Repeat

In general, we know

eiA+iB ̸= eiAeiB (16.7)

if A,B don’t commute. This means

eiHt ̸= Παe
ibαPαt (16.8)

Now we are specifically interested in

H =
∑
i

(Xi ⊗Xi+1 + Zi ⊗ Zi+1) = H1 +H2

H1 ≡
m∑
i

Xi ⊗Xi+1, H2 ≡
m∑
i

Zi ⊗ Zi+1

(16.9)

The question is, how does eiHt compare to eiH1teiH2t? We want to find this because all the terms
in H1 commute and all the terms commute in H2, so we can write eiH1t and eiH2t with an efficient
quantum circuit. However, H1 and H2 do not commute, so we cannot simply write eiH = eiH1eiH2 .
We can solve this with the Suzuki-Trotter method, which estimates eiH by performing incremental
steps as described below.
Suzuki-Trotter method:

eiδH ≈ eiδH1eiδH2 (16.10)

Claim 16.2.2.

∥eiδH − eiδH1eiδH2∥∞ ≤ O(m2δ2eδm) (16.11)

Proof. Idea: Note

eiδH = I + iδH +

∞∑
l=2

(iδH)l

l!
(16.12)

So

∥eiδH − I − iδH∥∞ =

∥∥∥∥∥
∞∑
l=2

(iδH)l

l!

∥∥∥∥∥
∞

≤
∞∑
l=2

δl

l!
∥H∥l∞ ≤

∞∑
l=1

δl

l!
(2m)l ≤ δ2(2m)2e2δm (16.13)

where ∥H∥∞ ≤ 2m since there are 2m terms with max eigenvalue 1 in H (∥ · ∥∞ denotes the
maximum eigenvalue of the operator).

80

So,
eiδH ≈ I + iδH

eiδH1eiδH2 = (I + iδH1)(I + iδH2) = I + iδ(H1 +H2)− δ2H1H2

(16.14)

Now by the same argument as above for ∥H∥∞ ≤ 2m, we have

δ2∥H1H2∥∞ ≤ δ2m2 (16.15)

which is on the order of the error between eiδH and I + iδH, we get

eiδH ≈ I + iδH ≈ eiδH1eiδH2 (16.16)

In summary, the Trotter method uses the fact that

eiHt =
(
eiHδ

) t
δ (16.17)

and, for δ small,

eiHδ ≈ eiδH1eiδH2 (16.18)

Lemma 16.2.3. Given matrices P,Q,R with ∥P∥∞, ∥Q∥∞, ∥R∥∞ ≤ 1, then

∥P −QR∥∞ ≤ ϵ =⇒ ∥P k − (QR)k∥∞ ≤ kϵ (16.19)

So using this Lemma,

∥eiδH − eiδH1eiδH2∥∞ ≤ O(m2δ2eδm) =⇒∥∥∥eiHt − (eiδH1eiδH2)
t
δ

∥∥∥
∞
≤ O(m2tδe2mδ)

(16.20)

So if we want our error to be ϵ, we need

δ =
ϵ

m2t
(16.21)

Thus the depth of the circuit needed to simulate this Hamiltonian is

O

(
t

δ

)
= O

(
m2t2

ϵ

)
(16.22)

Which proves equation (16.6).

16.3 Quantum Walk

H is a 2n×2n matrix, and H is s-sparse, which means each row and column has at most s non-zero
elements. Compared to locality, this effectively means there are s distinct Pα’s, but each Pα can
be arbitrarily non-local (it can be up to n-local).
Furthermore, each entry of H is ≤ α.
The depth is O

(
stα
ϵ

)
If H is local, s ≤ m and α ≤ m, which gives a better result than Trotter method.
More on this next week!

81

16.4 Linear Systems

Given an N ×N matrix A and a matrix b that is N × 1, we want to find an N × 1 matrix x such
that

Ax = b (16.23)

It is know that if A is an s-sparse matrix, then for k being the ratio of the highest to lowest eigen-
value of A (called the condition number of A), you can figure out x with some error in time O(Nks).

16.4.1 Quantum Linear Systems (Harrow, Hassidim, and Lloyd)

Given a s-sparse matrix A and a vector b,

|b⟩ = 1

∥b∥
∑
i

bi |i⟩ (16.24)

over a Hilbert space of dimension N with basis {|1⟩ , |2⟩ , . . . , |N⟩}.
|b⟩ can be generated by a unitary oracle U :

|b⟩ = U |1⟩ (16.25)

Suppose we have oracle access to A, which gives you access to two data sources:

1. Given x, y we can know Axy in 1 query.

2. Given x, we can know the non-zero columns of A in row x with s≪ N queries.

Our goal is to output

|x⟩ = 1

∥x∥
∑
i

xi |i⟩ (16.26)

such that Ax = b.
The HHL algorithm takes

O

(
k2s

ϵ

)
(16.27)

queries to O and U to output |x⟩ with error ϵ. This is independent of N ! Thus, this may be
potentially useful for solving linear systems where only a small part of the output x is needed.

Proof. Fact: Can assume that A is Hermitian. Suppose A is not Hermitian. Then define a new
problem [

0 A
A† 0

] [
0
x

]
=

[
b
0

]
(16.28)

whose solution will give solutions to Ax = b.
Sketch of proof:
Think of A as Hamiltonian. Then

A =
∑
i

Ei |ϕi⟩ ⟨ϕi| (16.29)

82

We want
|x⟩ ∝ A−1 |b⟩ (16.30)

Decompose |b⟩ into the eigenvalues of A:

|b⟩ =
∑
i

µi |ϕi⟩ (16.31)

Then
A−1 |b⟩ =

∑
i

µi
Ei
|ϕi⟩ (16.32)

Then perform the following steps:

1. Use phase estimation to figure out Ei.

2. Try to change |ϕi⟩ to 1
Ei
|ϕi⟩

3. Repeat

The advantage comes from the fact that PE occurs in superposition. More on this next week!

Furthermore, for any problem in BQP, you can find an observable M , a matrix A, and a vector
b such that for the solution x to Ax = b, determining ⟨x|M |x⟩ will solve that problem. In other
words, the problem of solving quantum linear systems is BQP-complete.

83

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 17

March 30, 2022 Scribes: Ethan Lee

Today’s lectures notes are on the following topics:

• Quantum Linear Systems

• Quantum Walks (revisited)

17.1 Recap: Hamiltonian Simulation, Quantum Linear Systems

17.1.1 Hamiltonian Simulation

Recall from the last lecture that the goal of Hamiltonian simulation is, given the s-sparse matrix
H, to simulate

eiHt. (17.1)

We found that the cost of this simulation is O(s · tϵ), where ϵ is the error term.
Why do we consider eiHt in this process and not e−iHt? Refer to Harrow’s Criteria: a computer

scientist will wish to simulate eiHt while a physicist will wish to simulate e−iHt.
H is specified by the following oracles (by ”specified”, we mean that we access H through these

oracles):

x, y −−−→ O −−−→ Hx,y

x −−−→ O −−−→ 1√
s

∑
y:Hx,y ̸=0 |x, y⟩

The first oracle accesses elements in H. The second oracle takes input x and outputs the
superposition over all columns in H with non-zero entries for x.

17.1.2 Quantum Linear Systems

In the Quantum Linear Systems problem, we have a hermitian, s-sparse, N ×N matrix A, where
s-sparse means we have at most s non-zero entries per row of A. Note that if A is not hermitian
to start with, we can use the trick mentioned in the last lecture to construct the problem[

0 A
A† 0

] [
0
x

]
=

[
b
0

]
. (17.2)

.
Then, similarly to the oracles defined above, we access the matrix A through the following

oracles:

84

x, y −−−→ O −−−→ Ax,y

x −−−→ O −−−→ 1√
s

∑
y:Ax,y ̸=0 |x, y⟩

Now, given |b⟩ written as

|b⟩ = 1

∥b∥
∑
i

bi |i⟩ ,

we encode a certain column matrix

b̄ =

b1
b2
...
bN

 . (17.3)

Note that above, being ”given” |b⟩ means that we have a nice unitary U such that

U |1⟩ = |b⟩ . (17.4)

The choice of |1⟩ is unimportant here, just that it is a simple state.
Then, the solution of the Quantum Linear System (QLS) problem is to find a quantum version

of x̄, such that

x̄ = A−1

b1
b2
...
bN

 =

x1
x2
...
xN

 . (17.5)

More precisely, the goal of the QLS problem then is to output a state
ϵ
≈ |x⟩ = 1

∥x∥2
∑

i xi |i⟩. Note
that this is analogous to the typical linear systems problem of finding x = A−1b.

17.2 Quantum Linear Systems

17.2.1 QLS Solution Theorem

Theorem 17.2.1. We can find |x⟩ in O(κ2 sϵ) queries to oracles and uses of U , where κ is the
condition number of A, the ratio of the largest eigenvalue and smallest eigenvalue of A.

We prove this theorem using the information in the following subsections.

17.2.2 Rewriting the QLS Problem

Before getting into the theorem proof, note that the technique described for solving the QLS
problem can be used to solve any problem of the form

x = f(A) · b, (17.6)

85

where f is a ‘nice’ matrix-valued function. Then, let us consider applying f to a scalar, which we
can think of as being the eigenvalue of a matrix. Within this form, we assume f satisfies

f(z) ≤ 1, f(z) ≥ θ, (17.7)

for some θ and for any z in some range I. Note that here, z is not a matrix. Then, we also
assume f is continuous in the range I; that is,

f(z + y) ⊆ (1± ηy)f(z). (17.8)

This form helps with solving more general problems, and we can write QLS in this form below.
Assume the spectrum of A is such that

spec(A) ∈
[
−1,−1

κ

]
∪
[
1

κ
, 1

]
. (17.9)

We pick our f in QLS to be

f(z) =
1

κz
. (17.10)

We also can see that our range I is

I =

[
−1,−1

κ

]
∪
[
1

κ
, 1

]
, (17.11)

as specified before. Then, this means that f(z) will be between θ and 1, where θ = 1
κ ; additionally,

we can see by simple calculation (not shown here) that η = κ. The intuition for this equality is
that the function f will change a lot at the smallest value of z.

Now, suppose we can write A in the ”Hamiltonian form”

A =
∑
i

Ei |ϕi⟩⟨ϕi| , (17.12)

where |Ei| ∈ [1κ , 1]. Then, f acts on the terms in this form of A such that

f(A) =
∑
i

f(Ei) |ϕi⟩⟨ϕi| . (17.13)

Now, given |b⟩ = U |0⟩ for some unitary, we wish to output a state
ϵ
≈ |x⟩ such that x = f(A) · b. In

QLS,

f(A) =
1

κ

∑
i

1

Ei
|ϕi⟩⟨ϕi| =

1

κ
A−1. (17.14)

17.2.3 Harrow-Hassidim-Lloyd Algorithm

The HHL Algorithm provides a solution to QLS and proceeds as follows:

1. Start with |b⟩ from QLS, where |b⟩ can be expanded in the eigenbasis of A, so that |b⟩ =∑
i µi |ϕi⟩. Then, add a register starting at |0⟩ which we will use in the next step. At this

point, our state is
∑

i µi |ϕi⟩ |0⟩.

86

2. Perform phase estimation on a unitary derived from A using some unitary U (more info on
what this unitary could be is provided below). Applying U changes each |ϕi⟩ |0⟩ in our state

to |ϕi⟩
∣∣∣Ẽi〉, where Ẽ is the eigenvalue estimate. At this point, our state is

∑
i µi |ϕi⟩

∣∣∣Ẽi〉.
3. This step is called Rejection Sampling. Add a register |0⟩Q, and take each |ϕi⟩

∣∣∣Ẽi〉 |0⟩Q to

|ϕi⟩
∣∣∣Ẽi〉 (f(Ẽi) |0⟩Q+√1− f2(Ẽi) |1⟩Q). At this step, our state is

∑
i µi |ϕi⟩

∣∣∣Ẽi〉 (f(Ẽi) |0⟩Q+√
1− f2(Ẽi) |1⟩Q).

4. Now, we undo the phase estimation and erase each
∣∣∣Ẽi〉 by applying the inverse of the phase

estimation unitary. Then, our state now is
∑

i µi |ϕi⟩ |0⟩ (f(Ẽi) |0⟩Q +
√
1− f2(Ẽi) |1⟩Q)

Revisiting Step 2, the phase estimation unitary must be some unitary with information about the
eigenvalues of A. An example could be

V = eiAt, (17.15)

as this V has phases eiEit. We can use Hamiltonian Simulation to implement this unitary V .
Looking to the result of the HHL Algorithm, we have final state∑

i

µi |ϕi⟩ |0⟩ (f(Ẽi) |0⟩Q+
√
1− f2(Ẽi) |1⟩Q) =

∑
i

µif(Ẽi) |ϕi⟩ |0⟩ |0⟩Q+µi
√
1− f2(Ẽi) |ϕi⟩ |0⟩ |1⟩Q .

Then, when we measure the Q register and get a 0, we have our solution, since our goal was to find
|x⟩ such that

|x⟩ ∝
∑
i

µif(Ei) |ϕi⟩ .

If we get a 1 upon measuring Q, we have an undesired term, suggesting that we should repeat the
algorithm some number of times, which we will find below. Alternatively, we can use amplitude
amplification to get further improvement on the number of repeats.

17.2.4 HHL Algorithm Analysis

We can analyze the cost of the algorithm as follows. Our resulting state from the HHL Algorithm
if Q is measured to be 0 is ∑

i

µif(Ẽi) |ϕi⟩ =
∑
i

µi(1± ηδ)f(Ei) |ϕi⟩ ,

if we invoke the properties of f that we found before. Then, we can have the error term (1 ± ηδ)
be set to (1± ϵ), where ϵ is the allowed error, by setting

δ =
ϵ

η
.

This sets the cost of phase estimation to be O(sηϵ) if we use the quantum walk operator. We can

also see that the probability of getting 0 when measuring Q is
∑

i µ
2
i f

2(Ẽi), which is bounded below

87

by θ2 = 1
κ2
. Then, we would repeat this algorithm O(1

θ2
) times, giving us the cost of the algorithm

to be
O(

s

θ2
· η
ϵ
).

We can improve this runtime by performing amplitude amplification. Using this, only O(1θ) calls
to the algorithm are needed and the improved runtime is

O(
s

θ
· η
ϵ
) = O(

κsη

ϵ
),

which if we set η = κ, is equal to O(κ2 sϵ), the runtime from Theorem 17.2.1. Thus, using amplitude
amplification is the final step towards showing that the HHL Algorithm proves Theorem 17.2.1.

17.3 Quantum Walks

17.3.1 Recap

Recall the setup of quantum walks: we have a graph G = (V,E) and a transition matrix P where

Pxy =
1

dx
,

and such that ∑
y

Pxy = 1.

We also assumed Detailed Balance, the property such that, given the stationary µ,

µxPxy = µyPyx.

Recall also the edge process (covered more in scribe notes 10), where we turned a graph into a
bipartite graph with a full set of vertices on the left and a full set of vertices on the right, and edges
between the sets if those edges already existed in the original graph. The edge process is such that
we take a random walk over all of the edges by using this bipartite version of the graph.

Recall that we defined the following states for the quantum walk:∣∣ψ1
x

〉
=
∑
y

√
Pxy |x⟩ ⊗ |y⟩ ,

∣∣ψ2
y

〉
=
∑
x

√
Pyx |x⟩ ⊗ |y⟩ .

We also defined the quantum walk operator,

W = ((2
∑
x

∣∣ψ1
x

〉〈
ψ1
x

∣∣)− 1)((2∑
y

∣∣ψ2
y

〉〈
ψ2
y

∣∣)− 1).
Then, we defined

Π1 =
∑
x

∣∣ψ1
x

〉〈
ψ1
x

∣∣ ,Π2 =
∑
y

∣∣ψ2
y

〉〈
ψ2
y

∣∣ ,
so that

W = (2Π1 − 1)(2Π2 − 1).
We also defined our stationary

|µ⟩ = 1√
2|E|

∑
x,y

|x⟩ ⊗ |y⟩ .

88

17.3.2 Remaining Proof in Quantum Walks

Recall that when discussing quantum walks, we had the conclusion where if we had

spec(W) = {e±2iθ1 , e±2iθ2 , . . . },

and {λJ} are the eigenvalues of the classical transition matrix P , then

cos θJ = λJ .

We now prove this result. In the vector space, there exists a basis where Π1 and Π2 become
block-diagonal. Then, we can write

Π1 =
∑
b

|ub⟩⟨ub| ,Π2 =
∑
b

|vb⟩⟨vb| ,

where b is the block number, and the |ub⟩ and |vb⟩ values are unit vectors or 0 by assumption.
By Jordan’s Lemma, W must also respect the Jordan block structure since it is the product of

reflections across Π1 and Π2. Then, we can write W in the form

Figure 17.1: Block-Diagonalized W

If we zoom in on one of the blocks, say block b, then it contains

(2 |ub⟩⟨ub| − 1b)(2 |vb⟩⟨vb| − 1b).

Thus, we can reduce this problem to a 2 × 2 context. Since W is a product of 2 reflections in 2
dimensions, it is a rotation, and we can find the angle of this rotation by looking to an example of
the effect of applying W on one specific vector, in particular, on vb.

Figure 17.2 shows that if θb is the original angle between vb and ub, then W will move vb by 2θb
since it simply reflects vb about ub, meaning the angle of rotation is 2θb. Then, we have

cos θb = ⟨ub|vb⟩ .

89

Figure 17.2: Rotating vb about ub

Additionally, we can write the SVD of Π1Π2 as∑
b

|ub⟩ ⟨ub|vb⟩ ⟨vb| .

Thus, to find cos θb, we compute the singular values of π1π2, and those singular values are equal to
the λJ values from before, which are the eigenvalues of W .

90

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 18 (Guest Lecture by Robert Huang)

April 1, 2022 Scribes: Michael Yu and Ashley Zhuang

18.1 Predicting Properties in a Quantum State

Suppose there is a physical source that generates the n-qubit state ρ, where ρ ∈ C2n×2n , ρ ⪰ 0
(positive semi-definite) and Tr(ρ) = 1. Quantum state tomography is the process of reconstructing ρ
from the outcomes of measurements performed on identical copies of the state. In general, quantum
state tomography can require exponentially-many such measurements. Instead of reconstructing the
entire quantum state, which can be costly, we can utilize shadow tomography to predict properties
of ρ such as Tr(O1ρ),Tr(O2, ρ), . . . ,Tr(OMρ) for observables Oi up to ϵ error.

18.2 How can we predict properties of ρ efficiently?

Task: Perform measurements on ρ to obtain a classical description Sρ of the data which can then
be used to predict Tr(O1ρ),Tr(O2, ρ), . . . ,Tr(OMρ) up to ϵ error. The idea is that after a sufficient
number of measurements N , we can uniquely determine Sρ for the quantum state and its list of
observables Oi. Here we assume that ∥Oi∥∞ ≤ 1.

18.2.1 Naive Case

Naively, we can determine Tr(O1ρ),Tr(O2, ρ), . . . ,Tr(OMρ) by measuring ρ under the eigenbasis of

Ok for k = 1, 2, . . . ,M . To ensure that we are within ϵ error, each observable requires L = O
(
logM
ϵ2

)
measurements. Since quantum states collapse after a measurement, we need

O

(
M logM

ϵ2

)
copies and measurements of the quantum state. By the Chernoff Bound,

Pr
[
|Ôk − Tr(Okρ)| < ϵ

]
≥ 1− .01

M

such that Pr[|Ôk − Tr(Okρ)| < ϵ,∀k = 1, 2, . . .M] ≥ .99 under the union bound where Ôk is our
reconstructed Ok under the algorithm. Naturally, it is not hard to see that the naive implementation
is inefficient and quite costly, especially for large M. In the classical case where ρ is diagonal, we
can get a linear speedup.

91

18.2.2 Classical Case

In the classical case, ρ is diagonal in the computational basis and its diagonal entries follow some
probability distribution:

ρ =

p1 . . .

pn

For i = 1, 2, . . . , N , we can then measure ρ in the computational basis {|b⟩ ⟨b|}b∈{0,1}n to obtain
bi ∈ {0, 1}n. Given observable Ok, we can predict Tr(Okρ) by using these bi measurements as

Ôk =
1

N

N∑
i=1

⟨bi|Ok |bi⟩

Since E|b⟩∼ρ[⟨b|Ok |b⟩] = Tr(Okρ) and | ⟨b|Ok |b⟩ | ≤ 1, we need N = O(logM
ϵ2

) measurements to

ensure that Pr[|Ôk−Tr(Okρ)| < ϵ] ≥ 1− .01
M , or equivalently under the union bound that Pr[|Ôk−

Tr(Okρ)| < ϵ,∀k = 1, 2, . . .M] ≥ .99. Therefore in the case where ρ is diagonal in the computational
basis, we see a significant improvement in both efficiently and cost. However, in the general case
where ρ may not be diagonal we would not be able to utilize this algorithm. Instead, we can follow
a similar procedure using shadow tomography to get similar efficiency to the classical case.

18.3 Shadow Tomography

The procedure for shadow tomography is similar to that of the classical case, but instead of assuming
that ρ is diagonal and measuring in the computational basis directly we first evolve ρ under some
unitary U . More precisely, for i = 1, . . . , N , sample Ui under some distribution over SU(2n)1 then

evolve ρ → UiρU
†
i and measure in the computational basis to obtain bi. We then store (Ui, bi)

classically. Since ρ cannot be assumed to be diagonal, it is crucial to first evolve ρ under Ui in
order for the diagonal terms of UiρU

†
i to have contributions from the off-diagonal terms of ρ.

For concreteness, let us see an example of shadow tomography where the unitaries are sampled
over the uniform distribution of Cl(2n)2 which can be efficiently simulated classically. Given Ok,
for i = 1, . . . , N compute

Xi = (2n + 1)Tr
(
OkU

†
i |bi⟩⟨bi|Ui

)
− Tr(Ok)

Using these Xi, our reconstruction of Tr(Okρ) is

Ôk = Median-of-Means(X1, . . . , XN)

Median-of-Means: Suppose Xi is a random variable with variance Var[Xi] = σ2. By

the Chebyshev, Pr
[
| 1L
∑L

i=1Xi − E[X]| < ϵ
]
≥ 1 − σ2

Lϵ2
. Equivalently, for Y = 1

L

∑L
i=1Xi and

1SU(2n) is the set of unitaries that can be generated by any combination of Hadamard, π/8 or CNOT gates. Recall
these set of gates achieve universality and thus it is an infinite set. Practical applications of shadow tomography
typically use smaller, finite sets such as Cl(2n).

2Cl(2n) is the Clifford group whose unitaries are generated by combinations of Hadamard, phase and CNOT gates.
The Clifford group has the property that any circuit with these gates can be reduced to one with linear depth, hence
the set is finite.

92

L = 10σ2

ϵ2
, Pr[|Y − E[Y]| < ϵ] ≥ .9. The Median-of-Means of the Xi is then defined as Z =

Median(Y1, . . . , YN/L).

To see that this construction of Ôk is indeed within ϵ error of Tr(Okρ), define

Gs =

{
1 |Ys − E[Y]| < ϵ

0 else

Now so long as at least half the Ys are such that |Ys − E[Y]| ≤ ϵ, then our Median-of-Means Z is
close to E[Y]. Specifically, we have

Pr[|Z − E[Y]| < ϵ] ≥ Pr

 1

N/L

N/L∑
s=1

Gs > .5

 ≥ 1− δ

for N
L = O(log 1

δ). All together, this construction of Ôk accurately predicts E[Y] = E[X] with

N = L ·O(log 1
δ) = O(σ

2

ϵ2
log 1

δ) measurements. Lastly, we want to show that E[X] = Tr(Okρ) and
this can be seen through state design.

18.3.1 State Design

For a uniform distribution over pure states, µH , we have the following properties:

1. First moment:
∫
dµH |ψ⟩⟨ψ| = 1

2n .

2. Second moment:
∫
dµH |ψ⟩⟨ψ|⊗2 = 1⊗1+SWAP

2n(2n+1) .

3. Third moment:
∫
dµH |ψ⟩⟨ψ|⊗3 = 1

2n(2n+1)(2n+2)

∑
π∈S3

Wπ.

where |ψ⟩ are pure states, SWAP(A⊗B) = B⊗A and S3 is the symmetric group over 3 elements.
Wπ for the third moment is then the 6 different ways of permuting 3 elements. We can use the
second moment to show that E[X] = Tr(Okρ), and we can use the third moment to show that
Var[X] ≤ 3Tr

(
O2
k

)
. Thus, the variance is bounded and does not scale with the system size.

Remarks:

1. If N = O

(
maxk

Tr(O2
k) logM
ϵ2

)
, we can predict Tr(O1ρ),Tr(O2, ρ), . . . ,Tr(OMρ) within ϵ error.

2. E[X] = EU
[∑

b∈{0,1}n ⟨b|UρU † |b⟩ [(2n + 1)Tr
(
OkU

† |b⟩ ⟨b|U
)
− Tr(Ok)]

]
.

93

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 19

March 30, 2022 Scribes: Richard Allen, Raluca Vlad

Today’s lectures notes are on Hamiltonian simulation using quantum walks.

19.1 Hamiltonian simulation using quantum walks

19.1.1 Setup

We discussed how to do Hamiltonian simulation for local Hamiltonians using the Trotter method,
but only with simulation time O(t2) for a time evolution of length t. We should be able to do this
simulation in linear time, since this is how nature does it. How can we do so?

eiHt
Trotter−−−−→ O(t2).

?? −→ O(t).

In this and the following lecture, we will prove we can achieve linear time simulation using
the quantum walks framework. Essentially, we interpret a Hamiltonian as a generalization of a
symmetric random walk. The method in fact applies to sparse Hamiltonians (that include local
Hamiltonians) with oracle access as detailed below (see also Lecture 17).

We will assume that it takes unit cost to make oracle calls. Let’s say we are given a Hamiltonian
HA on some N -dimensional space A, and say that HA is s-sparse. Also, say we are given an oracle
Oe that, on input |x, y⟩AB and |00 . . .⟩, outputs |x, y⟩AB, as well as the (x, y) entry |Hxy⟩ of the
Hamiltonian.

|x, y⟩AB ⊗ |00 · · ·⟩ancillae −−−→ Oe −−−→ |x, y⟩AB ⊗ |Hx,y⟩

Using the bonus part of homework 7, we construct the oracle Os that, on input |x⟩A |0⟩B, outputs
1√
s
·
∑

y:Hxy ̸=0

|x, y⟩AB .

That is, we have the oracle:

|x⟩A |0⟩B −−−→ Os −−−→ 1√
s

∑
y:Hx,y ̸=0 |x, y⟩AB

It will be useful to utilize the eigendecomposition of H:

H =
∑
J

EJ · |ϕJ⟩⟨ϕJ | .

Finally, define α = maxxy(|Hxy|).

94

19.1.2 Recall: Quantum Walks

Say we are given a Hermitian stochastic matrix with entries Pxy. This matrix must be real-valued,
so Hermiticity is equivalent to symmetry, ie. Pxy = Pyx. We defined the following quantum states:∣∣ψ1

x

〉
=
∑
y

√
Pxy |x⟩ |y⟩

∣∣ψ2
y

〉
=
∑
x

√
Pyx |x⟩ |y⟩

We also considered the projections:

Π1 =
∑
x

∣∣ψ1
x

〉〈
ψ1
x

∣∣
Π2 =

∑
y

∣∣ψ2
y

〉〈
ψ2
y

∣∣
The quantum walk operation was (2Π1 − 1)(2Π2 − 1). And we could compute Π1Π2 using the

fact that 〈
ψ1
x

∣∣ψ2
y

〉
=
√
PxyPyx = Pxy.

19.1.3 Hamiltonian Simulation: High Level

Today, we want to prove the following theorem:

Theorem In the setting from above, there exists a quantum walk QH which

(1) makes O(sαtϵ) calls to the oracles Oe, Os;

(2) for any input state |ω⟩A satisfies:

∥QH |ω⟩A ⊗ |0⟩ancillary − e
iHt |ω⟩A ⊗ |· · ·⟩ ∥ ≤ ϵ.

At a high level, we will be thinking of our Hamiltonian Hxy as a symmetric stochastic matrix
Pxy and designing a quantum walk operator V that has information about the eigenvalues Ej of
H. This procedure has some issues:

1.
∑

yHxy ̸= 1, so H is not truly stochastic.

2. Hxy may have complex or negative entries.

Ignoring these complications for the moment, the simulation algorithm acting on an eigenstate |ϕj⟩
of H would act as follows:

|ϕJ⟩A
PEV +controlled rotation−−−−−−−−−−−−−−−→ eiEjt |ϕJ⟩A |· · ·⟩

undo PEV−−−−−−→ eiEjt |ϕJ⟩A
Since phase estimation works in superposition, we can decompose an arbitrary state in the eigenbasis
of H and run the same algorithm:

|ω⟩A =
∑
J

βJ |ϕJ⟩A

|ω⟩A −→
∑
J

βJe
iEJ t |ϕJ⟩A = eiHt |ω⟩A

95

19.1.4 Hamiltonian Simulation: Details

Having seen a high level picture of Hamiltonian simulation using random walks, we now describe
the details of the implementation.

Consider the following quantum state (where A,B are registers of size 2N for an N ×N Hamil-
tonian and C,D are qubit registers)∣∣ψ1

x

〉
=

1√
sα
·
∑
y

√
Hyx |0, x⟩CA |y, 0⟩BD + |0⟩C |ξx⟩AB |1⟩D ,

where the second term inside the summation takes care that the state is normalized. Similarly,
define ∣∣ψ2

y

〉
=

1√
sα
·
∑
x

√
Hxy |0, x⟩CA |y, 0⟩BD + |1⟩C

∣∣ξ′y〉AB |0⟩D .
We will leave |ξx⟩ ,

∣∣ξ′y〉 unspecified, as their exact form will not matter. In the following claim
and its proof, we characterize the complexity of creating

∣∣ψ1
x

〉
,
∣∣ψ2
y

〉
.

Claim 19.1.1. There exist unitaries T 1 and T 2 such that∣∣ψ1
x

〉
= T 1 |0⟩C |x⟩A |0⟩B |0⟩D∣∣ψ2

y

〉
= T 2 |0⟩C |y⟩A |0⟩B |0⟩D

with T 1, T 2 each making one call to each of Os, Oe, O
†
e.

To prove this claim, start with |x⟩A |0⟩B and perform the following steps (adding ancillary
registers as needed):

|x⟩A |0⟩B
Os−−−−−−−−−−−→ 1√

s
·
∑

y:Hxy ̸=0

|x, y⟩AB ⊗ |00 · · · 0⟩

SWAP Oe SWAP−−−−−−−−−−−→ 1√
s
·
∑

y:Hxy ̸=0

|x, y⟩AB ⊗ |Hyx⟩ |0⟩D

Rejection sampling−−−−−−−−−−−−−→ 1√
s
·
∑

y:Hxy ̸=0

|x, y⟩AB ⊗ |Hyx⟩

(√
Hyx

α
|0⟩D +

√
1− |Hyx|

α
|1⟩D

)

O†
e−−−−−−−−−−−→ 1√

s
·
∑

y:Hxy ̸=0

|x, y⟩AB ⊗ |00 · · · 0⟩ancillas

(√
Hyx

α
|0⟩D +

√
1− |Hyx|

α
|1⟩D

)

=
1√
sα
·
∑
y

√
Hyx |x, y⟩AB |0⟩D + |ξx⟩AB |1⟩D ,

where to get the last line we dropped the extra ancillary registers and we defined

|ξx⟩AB :=
√
α− |Hyx| |x, y⟩AB .

This gives us a “quantum walk on (C2 ⊗ CN)⊗ (C2 ⊗ CN)”.

96

By adding a qubit register C, we recover
∣∣ψ1
x

〉
. The procedure for generating

∣∣ψ2
y

〉
is similar -

the only difference is we use the register C for rejection sampling and add D in the final step.

We will now define our quantum walk operator. Let

Π1 =
∑
x

∣∣ψ1
x

〉〈
ψ1
x

∣∣
Π2 =

∑
x

∣∣ψ2
y

〉〈
ψ2
y

∣∣
With these definitions, the product of the projectors Π1Π2 is

Π1Π2 =
∑
xy

∣∣ψ1
x

〉 〈
ψ1
x

∣∣ψ2
y

〉 〈
ψ2
y

∣∣
where we can quickly check that the inner product is〈

ψ1
x

∣∣ψ2
y

〉
=

1

sα
(
√
Hyx)

∗√Hxy.

Note that despite the presence of the additional states |ξx⟩ ,
∣∣ξ′y〉, this inner product correctly

captures the Hamiltonian entries, due to orthogonality of the qubit registers.
In general, Hyx may be complex. However, if we choose our square roots carefully, this equals

Hxy

sα , so Π1Π2 is

Π1Π2 =
1

sα

∑
xy

Hxy

∣∣ψ1
x

〉 〈
ψ2
y

∣∣
which is just the Hamiltonian (times 1/(sα)) in another basis! Hence, the singular values of Π1Π2

are the same as the eigenvalues of H (again, times 1/(sα)). Using our definitions of the unitaries
T 1 and T 2, we can alternatively write this as

Π1Π2 = T 1

(
|0⟩⟨0|C ⊗

HA

sα
⊗ |0⟩⟨0|B ⊗ |0⟩⟨0|D

)
(T 2)†

Now define the quantum walk operator by

W = (2Π1 − I)(2Π2 − I).

The eigenvalues of W are {e±2iθJ}, for cos θJ = EJ
sα the singular values of Π1Π2. Furthermore, the

Jordan blocks of the decomposition of Π1 and Π2 are defined by the following vectors:

T1 |0⟩ |ϕJ⟩ |00⟩ , T2 |0⟩ |ϕJ⟩ |00⟩

for |ϕJ⟩ an eigenstate of H, since these are the left and right singular vectors of Π1Π2, as the
decomposition above shows.

Now we consider the full quantum walk algorithm applied to an eigenstate of H:

1. Apply T 1 to map from |ϕJ⟩ to one of the Jordan blocks:

|0⟩C |ϕJ⟩A |0⟩B |0⟩D
T 1

−→ T 1 |0⟩C |ϕJ⟩A |0⟩B |0⟩D .

97

2. Perform phase estimation of the unitary W :

T 1 |0⟩C |ϕJ⟩A |0⟩B |0⟩D
PEW−−−→ a |µ+⟩ |2θJ⟩+ b |µ−⟩ |−2θJ⟩

where |µ±⟩ is the eigenstate of W in the Jth Jordan block with eigenvalue e±2iθJ .

3. Apply a controlled phase conditioned on the second register:

a |µ+⟩ |2θJ⟩+ b |µ−⟩ |−2θJ⟩
CTRL Phase−−−−−−−−→ eisαt cos(θJ)(a |µ+⟩ |2θJ⟩+ b |µ−⟩ |−2θJ⟩).

4. Undo phase estimation:

eisαt cos(θJ)(a |µ+⟩ |2θJ⟩+ b |µ−⟩ |−2θJ⟩)
PE−1

W−−−−→ eisαt cos(θJ)(a |µ+⟩+ b |µ−⟩)
= eisαt cos(θJ)T 1 |0⟩C |ϕJ⟩A |0⟩B |0⟩D

= eiEJ tT 1 |0⟩C |ϕJ⟩A |0⟩B |0⟩D

This demonstrates that we can use quantum walks to perform Hamiltonian simulation given an
eigenstate of the Hamiltonian. Since phase estimation works in superposition, this algorithm works
given any input state. In the following lecture, we will see a detailed analysis of the total number
of oracle calls necessary to achieve a precision ε, which we will find to be O(sαt/ε). This is linear
in t, as promised.

98

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 20

April 8, 2022 Scribes: Tao Lin, Bill Zhai

• (The rest of) Hamiltonian simulations.

• Quantum signal processing (QSP).

20.1 Preliminary: Chebyshev polynomials

By trigonometry, cos kθ and sin kθ can be written as polynomials of cos θ and sin θ. These polyno-
mials are called Chebysev polynomials:

• A Chebyshev polynomial of the first kind, Tk, is a degree k polynomial given by

Tk(cos θ) = cos kθ.

Let x = cos θ. We can write Tk(x) = cos k(cos−1 x).

• A Chebyshev polynomial of the second kind, Sk−1, is a degree k − 1 polynomial given by

Sk−1(cos θ) =
sin kθ

sin θ
.

For example:

cos θ = cos θ k = 1 : T1(x) = x

cos 2θ = 2 cos2 θ − 1 k = 2 : T2(x) = 2x2 − 1

cos 3θ = · · · · · · · · ·

and

S0(x) =
sin θ

sin θ
= 1

S1(x) =
sin 2θ

sin θ
=

2 sin θ cos θ

sin θ
= 2x.

Chebyshev polynomials were discovered 200 years ago by Chebyshev. They turned out to be
pretty useful in approximation theory and now appear in quantum computing, like Grover’s search.

Properties Here are two properties of Chebyshev polynomials that are worth mentioning:

1. ∀x ∈ [−1, 1], |Tk(x)| ≤ 1.

2. • Tk(x) is a “k mod 2” parity polynomial, meaning that all the powers of x in Tk(x) are
even if k is even, and odd if k is odd.

• Sk(x) (or Sk−1(x)) is also a “k mod 2” (or “k − 1 mod 2”) parity polynomial.

99

20.2 Hamiltonian simulation

Recall Recall that we have a Hamiltonian H, which is an N ×N Hermitian matrix with eigen-
decomposition H =

∑
J EJ |ϕJ⟩⟨ϕJ |, states

∣∣ψ1
x

〉
,
∣∣ψ2
y

〉
∈ HCA ⊗ HBD where HA,HB are both

N -dimensional, HC ,HD are both 2-dimensional. The key point is〈
ψ1
x

∣∣ψ2
y

〉
=
Hxy

sα
(20.1)

where s is the sparsity and α is the largest entry of H. We have the quantum walk operator W :

W = (2Π1 − 1)(2Π2 − 1),

where
Π1 =

∑
x

∣∣ψ1
x

〉〈
ψ1
x

∣∣ , Π2 =
∑
y

∣∣ψ2
y

〉〈
ψ2
y

∣∣ .
We said that Hamiltonian simulation (to approximate eiHt |ω⟩A within ε error) can be achieved
with O(sαtε) calls to Oe, Os, O

−1
s , using phase estimation (not proved yet).

Improvement by QSP One way to improve the O(sαtε) bound is to use QSP. QSP gets rid of
phase estimation and improves the bound to O(sαt+ log 1

ε), which turns out to be optimal.
Another usage of QSP is for the QLS (quantum linear system) problem. Recall that in QLS,

we had a matrix A with condition number κ, sparsity s. We assumed that its largest entry α = 1.
We talked about a procedure that achieves a cost of order O(κ

2s
ε), using phase estimation. QSP

and its generalization instead achieve O(κs log 1
ε).

We will (in Section 20.3) talk about the general idea of how QSP is used in the above problems.
We will not go into the details.

20.2.1 Finishing the proof for Hamiltonian simulation

We will show the O(sαtε) bound. Recall that∣∣ψ1
x

〉
= T 1 |0⟩C |x⟩A |0⟩B |0⟩D ,∣∣ψ2

y

〉
= T 2 |0⟩C |y⟩A |0⟩B |0⟩D .

We find the (non-zero) singular values of Π1Π2:

Π1Π2 =
∑
x,y

∣∣ψ1
x

〉 〈
ψ1
x

∣∣ψ2
y

〉 〈
ψ2
y

∣∣ (20.1)=
∑
x,y

Hxy

sα

∣∣ψ1
x

〉 〈
ψ2
y

∣∣
= T 1

(
|0⟩⟨0|C ⊗

H

sα
⊗ |0⟩⟨0|B ⊗ |0⟩⟨0|D

)(
T 2
)†

=
∑
J

EJ
sα︸︷︷︸

a singular value

T 1 |0⟩C |ϕJ⟩A |0⟩B |0⟩D︸ ︷︷ ︸
a left singular vector

⟨0|C ⟨ϕJ |A ⟨0|B ⟨0|D
(
T 2
)†︸ ︷︷ ︸

a right singular vector

. (20.2)

Reminder: singular value decomposition (SVD). The SVD of a matrix M is M =∑
J σJ |µJ⟩⟨νJ |, where σJ > 0 is a singular value, |µJ⟩ is called a left singular vector, |νJ⟩ is

called a right singular vector. |µJ⟩’s are mutually orthogonal. |νJ⟩’s are mutually orthogonal.

100

Figure 20.1: Jordan decomposition: the J-th block

Now, we figure out the eigenvalues ofW = (2Π1−1)(2Π2−1). We do the jordan decomposition,
so Π1 =

∑
J |µJ⟩⟨µJ | and Π2 =

∑
J |νJ⟩⟨νJ |, as shown in Figure 20.1. The J-th block of Π1Π2 =∑

J |µJ⟩ ⟨µJ |νJ⟩ ⟨νJ | is
|µJ⟩ ⟨µJ |νJ⟩︸ ︷︷ ︸

cos θJ

⟨νJ | ,

from which we see that |µJ⟩ is a left singular vector, |νJ⟩ is a right singular vector, and ⟨µJ |νJ⟩ =
cos θJ is the singular value. Compared with (20.2), we see that the singular value cos θJ = EJ

sα . So,
within the J-th Jordan block, the two vectors |µJ⟩ and |νJ⟩ have an angle θJ such that

cos θJ =
EJ
sα

.

As discussed in previous lectures, the operator (2Π1 − 1)(2Π2 − 1) acts as a rotation by angle 2θJ
in the J-th 2D subspace, and thus has eigenvalues

e±2iθJ ,

with phases ±θJ .

Procedure of Hamiltonian simulation The following is a sketch. See Lecture Note 19 or
previous scribe notes for more details. The procedure works as follows:

Input |w⟩A =
∑
J

βJ |ϕJ⟩A
add registers−−−−−−−−→
apply T 1

T 1 |0⟩C |ω⟩A |0⟩B |0⟩D =
∑
J

βJT
1 |0⟩C |ϕJ⟩A |0⟩B |0⟩D .

101

For the J-th component,

T 1 |0⟩C |ϕJ⟩A |0⟩B |0⟩D
PEW−−−→ get θ′J ≈ θJ ;

let E′
J = sα cos θ′J ;

apply eiE
′
J t −−−→ eiE

′
J tT 1 |0⟩C |ϕJ⟩A |0⟩B |0⟩D.

Since the above works in superposition, we obtain
∑

J βJe
iE′

J tT 1 |0⟩C |ϕJ⟩A |0⟩B |0⟩D. Then,∑
J

βJe
iE′

J tT 1 |0⟩C |ϕJ⟩A |0⟩B |0⟩D
undo T 1

−−−−−−−−−→
remove C,B,D

∑
J

βJe
iE′

J t |ϕJ⟩A

≈
∑
J

βJe
iEJ t |ϕJ⟩A = eiHt |ω⟩A .

Analysis To obtain an ε-error Hamiltonian simulation, we can require

|E′
J − EJ | ≤

ε

2t
(20.3)

because |eix′ − eix| ≤ 2|x′ − x|. Because |E′
J − EJ | = sα| cos θ′J − cos θJ | ≤ sα|θ′J − θJ |, (20.3) is

satisfied when
|θ′J − θJ | = O(

ε

sαt
).

This error of phase estimation can be achieved with cost O(sαtε).

20.3 Quantum signal processing

In retrospect, all our effort in Hamiltonian simulation is to apply the function eiEJ t in front of an
input state. What quantum signal processing does is to provide a more general scheme for applying
any polynomials of cos θJ (or cos 2θJ , as we will see). Then we can apply those complicated functions
like eiEJ t = eisα cos θJ t by polynomial approximation.

Quantum signal processing is similar to what we did in quantum linear systems, where we
wanted to apply function f(A) to a state |b⟩:

f(A) |b⟩ , f(z) =
1

κz
,

A =
∑
i

Ei |ϕi⟩⟨ϕi| , f(A) =
∑
i

f(Ei) |ϕi⟩⟨ϕi| .

Phase estimation has the power to do more interesting functions f(A) than what we have seen so
far. Quantum signal processing is slightly less general, in the sense that it can only do polynomials.
But, it is more efficient, with only O(degree) cost.

(Main message:) QSP applies polynomials of cos θ with O(degree) cost.

102

20.3.1 Applications of QSP

As a hint of how QSP can be useful, we look at the example of Hamiltonian simulation: in the J-th
Jordan block, we want to apply the function eiEJ t:

eiEJ t = eisαt cos θJ
(Taylor expansion)

=
∞∑
ℓ=0

(isαt cos θJ)
ℓ

ℓ!
≈

d∑
ℓ=0

(isαt cos θJ)
ℓ

ℓ!

where the approximation error is

error ≈ (sαt)d

d!

(Stirling’s approximation)
≈

(esαt
d

)d
≤ ε

if we choose

d = 4sαt+ log
1

ε
.

This gives the O(sαt+ log 1
ε) bound we claimed in Section 20.2.

As another hint, for the QLS problem, we want to apply 1
κs cos θ (since we want to apply f(Ei) =

1
κEi

= 1
κsα cos θi

= 1
κs cos θi

where we have assumed that the largest entry α = 1). Let x = κs cos θi.

We approximate 1
x by 1−(1−x2)d

x .1 If x is in some “good” range, then the degree d here is roughly
O(ks log 1

ε), as claimed in Section 20.2.

20.3.2 Formal description of QSP

Introduction Recall that
∣∣ψ1
x

〉
= T 1 |0⟩C |x⟩A |0⟩B |0⟩D, and Π1 =

∑
x

∣∣ψ1
x

〉〈
ψ1
x

∣∣. How do we
implement 2Π1 − 1? To answer that, we write

Π1 =
∑
x

∣∣ψ1
x

〉〈
ψ1
x

∣∣ = T 1
(∑

x

|0⟩⟨0|C ⊗ |x⟩⟨x|A ⊗ |0⟩⟨0|B ⊗ |0⟩⟨0|D
)
(T 1)−1

(because
∑
x

|x⟩⟨x|A = 1A) = T 1
(
|0⟩⟨0|C ⊗ 1A ⊗ |0⟩⟨0|B ⊗ |0⟩⟨0|D

)
(T 1)−1

and
2Π1 − 1 = T 1

(
2 |0⟩⟨0|C ⊗ |0⟩⟨0|B ⊗ |0⟩⟨0|D − 1CBD

)
⊗ 1A(T 1)−1.

So, to implement 2Π1 − 1 we can first apply (T 1)−1, then do a reflection about |0⟩C ⊗ |0⟩B ⊗ |0⟩D
(in the C,B,D registers), and finally apply T 1.

Can we do something more general than 2Π1 − 1? Looking at the middle step, we have the
following transformation:

|0⟩C |0⟩B |0⟩D −→ |0⟩C |0⟩B |0⟩D ;

for any state |θ⟩CBD that is orthogonal to |0⟩C |0⟩B |0⟩D,

|θ⟩CBD −→ − |θ⟩CBD .

We can generalize this: instead of −1, we can apply any arbitrary phase to |θ⟩CBD:

|0⟩C |0⟩B |0⟩D −→ |0⟩C |0⟩B |0⟩D ;

1This is different from what we get from Taylor expansion (at x0 = 1), which is
∑d−1

n=0(−1)n(x− 1)n = 1−(1−x)d

x
.

The approximation 1−(1−x2)d

x
turns out to be better for some specific range of x.

103

Figure 20.2: Jordan decomposition: the b-th 2D block

|θ⟩CBD −→ eiϕ |θ⟩CBD .

In this manner, we achieve the following more general form of “reflection”:

Π1 + eiϕ(1−Π1) =: Uϕ.

In particular, when ϕ = π we recover the original reflection 2Π1 − 1.

Our goal We ask the following question: instead of W = (2Π1 − 1)(2Π2 − 1), what will happen
when we apply the following operator Wϕk,ϕk−1,...,ϕ1?

Wϕk,ϕk−1,...,ϕ1 = Uϕk(2Π2 − 1)Uϕk−1
(2Π2 − 1) · · ·Uϕ1(2Π2 − 1). (20.4)

Quantum signal processing provides understanding for this question, which is our goal.

Let’s begin with the example of ϕk = · · · = ϕ1 = π, where Wπ,...,π =
(
(2Π1 − 1)(2Π2 − 1)

)k
.

What does the matrix
(
(2Π1−1)(2Π2−1)

)k
do inside the b-th Jordan block (Figure 20.2)? Recall

that (2Π1 − 1)(2Π2 − 1) is the rotation by angle 2θb. So,
(
(2Π1 − 1)(2Π2 − 1)

)k
is the rotation by

angle 2kθb. Using {|ub⟩ ,
∣∣u⊥b 〉} as basis ({|0⟩ , |1⟩}), the matrix in the b-th block is written as[

cos 2kθb sin 2kθb
− sin 2kθb cos 2kθb

]
.

Using Chebyshev polynomials Tk(cos 2θb) = cos 2kθb and Sk−1(cos 2θb) =
sin 2kθb
sin 2θb

, the above matrix
becomes

=

[
Tk(cos 2θb) Sk−1(cos 2θb) sin 2θb

−Sk−1(cos 2θb) sin 2θb Tk(cos 2θb)

]
.

104

Formal statements Here is the general theorem of quantum signal processing:

Theorem 20.3.1 (QSP Part 1). The matrix Wϕk,ϕk−1,...,ϕ1 looks like[
Pk(cos 2θ) Qk−1(cos 2θ) sin 2θ

−Q∗
k−1(cos 2θ) sin 2θ P ∗

k (cos 2θ)

]
(where P ∗

k , Q
∗
k−1 are the complex conjugates of Pk, Qk−1) in a 2D block with angle θ, such that

1. Pk, Qk−1 are “k mod 2”, “k− 1 mod 2” parity polynomials, of degree k, k− 1, respectively.

2. |Pk(cos 2θ)|2 + |Qk−1(cos 2θ) sin 2θ|2 = 1.

3. |Pk(cos 2θ)|2 ≤ 1.

Note: The first property is similar to the property of Chebyshev polynomials. It can be proved
by induction. The second property holds true because the matrix is unitary. The third property
also follows from unitarity, because the norm of any entry in a unitary matrix is at most 1.

What is more surprising is the part 2 of the quantum signal processing theorem, which says
that the converse direction is also true: for any polynomials that satisfy the above three properties,
we can find angles ϕk, ϕk−1, . . . , ϕ1 that generate a matrix with those polynomials.

Theorem 20.3.2 (QSP Part 2, [LYC16]). Given polynomials Pk, Qk−1 such that

1. Pk, Qk−1 are “k mod 2”, “k− 1 mod 2” parity polynomials, of degree k, k− 1, respectively.

2. |Pk(x)|2 + |Qk−1(x)|2(1− x2) = 1.

3. |Pk(x)|2 ≤ 1 ∀x ∈ [−1, 1].

Then ∃ ϕk, ϕk−1, . . . , ϕ1 such that Wϕk,ϕk−1,...,ϕ1 looks like[
Pk(cos 2θ) Qk−1(cos 2θ) sin 2θ

−Q∗
k−1(cos 2θ) sin 2θ P ∗

k (cos 2θ)

]
in a 2D block with angle θ.

With this theorem, once we take Pk, Qk−1 to be the Taylor expansions of some functions, we
can find the corresponding phases ϕk, ϕk−1, . . . , ϕ1, and then do k “reflections”, each of the form
Uϕk(2Π2 − 1).

The rough idea of the proof of Theorem 20.3.2 is as follows. According to condition 1, Pk and
Qk−1 have the form:

Pk(x) = akx
k + ak−2x

k−2 + · · · , Qk−1(x) = bk−1x
k−1 + bk−3x

k−3 + · · · .

The condition |Pk(x)|2 + |Qk−1(x)|2(1 − x2) = 1 implies that the x2k-term in the polynomial
|Pk(x)|2 + |Qk−1(x)|2(1− x2) must have coefficient 0, which gives

|ak|2 − |bk−1|2 = 0.

So, we have
ak = eiϕkbk−1

for some phase ϕk, which is what we want. We then reduce the degrees of Pk and Qk−1 and use
induction to find the remaining phases ϕk−1, . . . , ϕ1. (See more details in Lecture Note 20.)

105

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 21

April 11, 2022 Scribe: Ted Pyne

In quantum complexity theory, we ask “which Hamiltonians are hard?” We have seen
algorithms that show simulating local Hamiltonians is not hard, but it may still be hard to precisely
compute their ground energy. Soon, we will discuss computing approximate ground energies, which
is often sufficient. Towards this, we will discuss the idea of lower bounds in more generality, which
correspond to showing a model (like quantum circuits) cannot do a good job at estimating ground
energy. For today’s lecture, we will first review Pauli matrices, then discuss classical error-correcting
codes, then begin to explore quantum error correction.

In upcoming lectures, we will discuss specifically Gottesman-Knill Theorem, variational quan-
tum algorithms, NLTS conjecture, the quantum PCP conjecture, and quantum circuit lower bounds.

21.1 Pauli Matrices Review

Recall the Pauli X and Z matrices, where we fix the standard computational basis {|0⟩ , |1⟩}:

X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
.

Furthermore recall (and it is easy to show) that ZX = −XZ (i.e. the matrices anticommute) and
X2 = Z2 = I. Because of this, for any eigenvalue λ of either unitary we have λ2 = 1 =⇒ λ ∈
{−1, 1}.

Rather than considering Pauli matices acting on a single qubit, we can define their extension
to multiple qubits:

Definition 21.1.1. An n-bit Pauli unitary is an unitary of the form

X1 ⊗X2 ⊗ I3 ⊗ · · · ⊗Xn

or
Z1 ⊗ I2 ⊗ Z3 ⊗ · · · ⊗Xn

where the unitary acts as X or Z respectively on a subset of the bits [n] and acts as the identity
on the others. For a ∈ {0, 1}n, we denote

Xa def
=

n⊗
i=1

Xa(i)

i

where X0 = I and Zb is defined analogously.

We now prove some basic properties of multi-bit Paulis. For the remainder of the section fix
a, b ∈ {0, 1}n and let . denote the inner product.

106

Fact 21.1.2. We have
XaZb = (−1)a.bZbXa.

Proof. For every index i where a(i) = b(i) = 1 we have that Xa(i)
i Zb

(i)

i = −Zb(i)i Xa(i)
i and otherwise

we have Xa(i)
i Zb

(i)

i = Zb
(i)

i Xa(i)
i , so the number of minus signs “picked up” is precisely a.b.

Fact 21.1.3. Letting |w⟩ = |w1⟩ . . . |wn⟩, we have

Xa |w⟩ = |a⊕ w⟩ , Zb |w⟩ = (−1)b.w |w⟩ .

Proof. First, for an index i where Xa(i)
i = X we flip that position of w, which can be expressed as

taking the XOR of w with a. Second, for an index i where Zb
(i)

i = Z, if wi = 1 we pick up a minus
sign and otherwise do not, so the number of minus signs is b.w.

Finally, note that since X,Z have eigenvalues restricted to {−1, 1}, it is easy to write down
the projections onto the relevant eigenspaces. For instance, the projections onto the λ = 1,−1
eigenspaces of Xa are given by

I +Xa

2
,

I −Xa

2

and an analogous fact holds for Zb.

21.1.1 Concurrent Measurement

Recall that on a single bit, we cannot measure with respect to the eigenvalues of of X,Z simulta-
neously because they do not commute (as XZ = −ZX). However, simultaneous measurement is
sometimes possible on more than one qubit. For instance, the 2-qubit unitaries X ⊗X and Z ⊗ Z
do commute by Fact 21.1.2. In fact, to simultaneously measure we can use a special basis consisting
of 4 projection operators:

{P±,±} =
{
I ⊗ I ±X ⊗X

2
· I ⊗ I ± Z ⊗ Z

2

}
.

We will exploit this ability to measure simultaneously while constructing error correcting codes.

21.2 Error Correction Codes

We first review some elements of classical error correction. For (many) more details, see the CS
229R notes.

Definition 21.2.1. A (linear) n, k, d code is defined by a parity check matrix H ∈ Fn−k×n2 .
Let ai be the ith row of H. The codewords are defined as

C = {w : Hw = 0}

i.e. the dot product of w with ai is 0 mod 2 for all i. The number of codewords is 2k (by a dimension
argument), and the distance d is the minimum Hamming weight of a nonzero codeword.

107

http://people.seas.harvard.edu/~madhusudan/courses/Spring2020/
http://people.seas.harvard.edu/~madhusudan/courses/Spring2020/

The defintion of distance above comes from the ability of codes to detect errors - given a
codeword w and e ∈ {0, 1}n of Hamming weight at most d− 1, we have H(w ⊕ e) = He ̸= 0, and
hence if we receive the corrupted message w+ e we can notice an error has occurred. Note that if e
is allowed to have Hamming weight equal to the distance or greater, we have no hope of correcting
all possible errors, as we can have w + e = w′ for w′ ∈ C.

For example, we can fix n = 5 and consider the repetition code (rep code), specified by the
following parity check matrix:

H =

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

One can see that the only two codewords are {00000, 11111}.

21.3 Quantum Error Correcting Codes

In the classical world, our error vector e flipped at most d− 1 bits in our received message. In the
quantum world, our model of corruption is different - we instead wish to detect the application of
an arbitrary unitary that acts on only a few qubits, which seems to be a much harder problem. To
illustrate a further challenge in constructing quantum EC codes, we can first attempt to define a
rep code in quantum-world. Fix n and consider a code that takes

|0⟩ → |0⟩1 . . . |0⟩n , |1⟩ → |1⟩1 . . . |1⟩n .

Since our code should be used to transmit an arbitrary quantum state, one natural question is what
should |+⟩ be transmitted as? Unfortunately, sending it to |+⟩n violates the no-cloning theorem.
Even worse, how do we analyze this code’s vulnerability to uncountably-many possible errors?

To solve the second problem, we use that an arbitrary unitary can be written as a linear
combination of Pauli unitaries, so it suffices to analyze the code’s vulnerability to Pauli operator
corruption. To analyze this, we first cast the classic rep code in the language of quantum.

21.3.1 The Quantum Rep Code

A (quantum) code is defined as the stabilizer of a set of unitaries - that is, quantum states that
are fixed by every member of the set. For concreteness, for now we focus on defining the (classical)
rep code in this manner. The set of stabilizers we use is as follows:

ΠC = Stab{Za(1) , . . . , Za(n−1)} = {|w⟩ : Za(i) |w⟩ = |w⟩ ∀i}

where ai is the ith row of the classical parity check matrix. Recall that Za
(i) |w⟩ = (−1)a.w by

Fact 21.1.2, so the only computational basis vectors in the code are |0⟩n and |1⟩n The code is thus
Span{|0⟩n , |1⟩n}.

Now, given a vector |w⟩ we can measure in the basis {Za(1) , . . . , Za(n−1)}. If we measure in the
1 eigenspace (rather than −1) with respect to all elements of the set, we have that the recieved
word is in the code, and if we measure −1 the recieved word is not in the code.

To cast classical bit flip errors in this language, recall that Xe |w⟩ = |w ⊕ e⟩, so flipping the

bits specified by the vector e can be detected if Za
(i)
Xe ̸= XeZa

(i)
for some i. It is easy to see

108

that any error with Hamming weight at most n− 1 is detected by some Za
(i)
, exactly analogous to

the classical definition. For an example of a bit flip that cannot be detected by our current set of
constraints, we can consider

X1 ⊗X2 ⊗ . . .⊗Xn.

Finally, we outline why this code is not a good quantum code. Consider the two codewords
produced by input states |+⟩ and |−⟩ respectively. These are

“ |+⟩′′ = |0⟩
n + |1⟩n√

2
, “ |+⟩′′ = |0⟩

n − |1⟩n√
2

Unfortunately, there is a unitary acting on a single qubit that takes the |+⟩ encoding to the |−⟩
encoding - the unitary Z1 ⊗ I2 ⊗ . . . ⊗ In. As such, this code has distance 1, and cannot detect a
single error. In the language of quantum codes, we cannot detect this error because it commutes
with Za

(i)
for all i. Luckily, we will see in the next lecture that adding a single additional element

to our set, X1n , will solve this problem.

109

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 22

April 15, 2022 Scribes: Weiyu Li

Roadmap

Today we will focus on

1. Recap of classical codes and their quantum view

2. CSS codes

3. Logical operators

4. How to encode quantum data

5. Local indistinguishability

22.1 Recap

Throughout this note, we consider n-bit binary code, denoted as C ⊂ {0, 1}n. Also, the operations
are under F2, e.g., 1 + 1 = 0.

Definition 22.1.1 (Linear code). We say an error correcting code C is linear, if for any w,w′ ∈ C,
we have w+w′ ∈ C. A linear code C can be generated from the span of its basis {b1, b2, . . . , bk} as

C =

{
k∑
i=1

αibi : αi ∈ {0, 1}, i = 1, 2, . . . , k

}
.

An equivalent definition is from the parity check matrix

H =

a1
a2
...

an−k

 ∈ {0, 1}(n−k)×n,
where ai is the i-th row vector of H. Then the code is the null space of H, written as

C = {w : Hw = 0} = {w : aiw = 0,∀i ∈ [n− k]}.

The number of codewords is 2k, and the distance of the linear code is the minimum Hamming
weight of the 2k − 1 nonzero codewords.

110

For a ∈ {0, 1}n, we use the notations

Xa def
=

n⊗
i=1

Xa(i)

i , Zb
def
=

n⊗
i=1

Zb
(i)

i

to denote specific n-bit Paulis with only X or Z operators. It is not hard to show that

XaZb = (−1)a.bZbXa, (22.1)

where . denotes the inner product of two vectors in {0, 1}n. More generally speaking, n-bit Paulis
(defined in Definition 21.1.1) either commute or anti-commute.

Definition 22.1.2 (Quantum code). Analogous to the parity check matrix in classical linear code,
a set of Paulis defines a quantum code. In specific, a quantum code is the subspace stabilized1 by
the set, that is, the codewords are unchanged after applying every unitary in the set. A code can
be represented by its stabilizers.
The weight of a multi-bit Pauli is the number of non-identity one-bit qubits it has. Then the
(quantum) distance of a quantum code is the minimum weight of the non-identity Paulis that
commute with all stabilizers but are not part of the stabilizers.

For example, the code with stabilizers {Za1 , . . . , Zan−k} is

ΠC = Stab{Za1 , . . . , Zan−k} = Span{|w⟩ = |w1⟩ ⊗ · · · ⊗ |wn⟩ : Zai |w⟩ = |w⟩ , ∀i ∈ [n− k]}

where ai is the i-th row of the classical parity check matrix. From (22.1), Xb commutes with all
stabilizers if and only if ai.b = 0 for all i, which is exactly b ∈ C in the classical view. Thus
the quantum distance of ΠC is exactly the same as the classical distance of C Also, Xb can be
visualized as a codeword via Xb |0⟩ = |b⟩. In fact, the linearity guarantees that Xb maps codewords
to codewords as Xb |w⟩ = |w + b⟩. That said, Xb is a logical operator in the code space.

Now, let’s cast classical bit flip errors in this quantum language. Suppose Xe satisfies a1.e = 1,
then for any codeword w ∈ C,

Za1Xe |w⟩ = (−1)a1.eXeZa1 |w⟩ = −Xe |w⟩ = − |w + e⟩ ,

which implies that flipping the bits specified by the vector e can be detected by the change of
eigenvalue (from 1 to −1) of Za1 . Classically, the above equation can be viewed as

H(w + e)
Hw=0
= He =

[
1
...

]
̸= 0.

In a nutshell, errors anticommute with at least one stabilizer, while logical errors (logical changes
between codewords) commute with all stabilizers.

1The word “stabilizer” comes from group theory. We say a state is stabilized by a set of unitaries, or the unitaries
are the stabilizer of the state space.

111

22.2 CSS Codes

Suppose there is a unitary Ze and a (quantum) codeword |b⟩ ∈ ΠC such that e.b = 1, then

Ze(|0⟩⊗n + |b⟩) = |0⟩⊗n − |b⟩ .

Since |0⟩⊗n and |b⟩ are both in the 1 eigenspace of all the stabilizers, the error caused by Ze cannot
be detected from measuring the eigenvalues with respect to the existing stabilizers. Thus, we need
to introduce new stabilizer(s) that (i) commutes with all other stabilizers and (ii) detects Ze.

We claim that adding Xb in the set of stabilizers satisfies this, since b is a codeword orthogonal
to ai’s, and X

b(|0⟩⊗n ± |b⟩) = ±(|0⟩⊗n + |b⟩).
With the new stabilizers {Za1 , . . . , Zan−k , Xb}, the code changes, since Xb |w⟩ = |w + b⟩ ≠ |w⟩

for any w ∈ C. However, note that |w⟩ + |w + b⟩ (unnormalized) is still a codeword; in fact, the
new code can be characterized by

Span{|w⟩+ |w + b⟩ : w ∈ C}.

In general, we can define the CSS code, which is the initials of Calderbank, Shor and Steane.

Definition 22.2.1 (CSS code). Let H1, H2 be linear subspaces such that H1 ⊥ H2. Let C1 be the
subspace orthogonal to H1 (we can think of C1 as a classical code and H1 as the span of its parity
check matrix). Note that H2 ⊂ C1. CSS code has stabilizers {Za1 , . . . , Zan−k , Xb1 , . . . , Xbl},
where a1, . . . , an−k ∈ H1, b1, . . . , bl ∈ H2 are linearly independent. Then CSS code consists of the
stabilized states, whose code space is

ΠC′ = Span{
∑
b∈H2

|w ⊕ b⟩ : w ∈ C1}

with dimension 2k−l.
Detectable errors are unitaries Ze

′
, Xd′ that do not commute with at least one of the stabilizers,

while logical errors are Ze, Xd that commute with all stabilizers.

From the definition, the distance of a code is the minimum weight of logical errors.

Example 22.2.2 (Trivial CSS code). Suppose Zi, Xi are Z and X operators on the i-th qubit.
Consider stabilizers Z1, . . . , Zn−k, Xn−k+1, . . . , Xn−k+l. One can show that the logical operators are

{Xn−k+l+1, Zn−k+l+1, . . . , Xn, Zn},

and the codewords are as trivial as
n−k⊗
i=1

|0⟩i
n−k+l⊗

j=n−k+1

|+⟩j
⊗
|ψ⟩ : ψ is a (k − l)-dimension state

 := Πtrivial.

Although the code space is trivial and any error on the last k − l qubits cannot be detected and
are all logical operators, it turns out that any quantum code is a rotation of this trivial one! More
concretely, we have the following theorem.

Theorem 22.2.3. Any quantum code Π can be written as

Π = UΠtrivialU
†,

where the unitary U is a Clifford unitary and can be generated by Hadamard, Phase, and CNOT
gates.

112

22.3 Logical Operators

Let’s go one step back. This section will be an independent discussion and can be skipped. Recall
the definition of qubits. A qubit, for the purpose of error correction, is a pair of X and Z operators.
Note that Y = iXZ and one can get any operator from X and Z. In an algebraic point of view, a
qubit is a pair of operators (P,Q) that satisfies

PQ = −QP, P 2 = Q2 = I.

Thus, the way to identify qubits in the code space, is to identify the pairs of operators exhibiting
the above algebra. This is captured by the following theorem.

Theorem 22.3.1. If the code has dimension 2k−l, then there exists {Pi, Qi}k−li=1 such that

(i) PiQj =

{
−QjPi, if i = j,

QjPi, if i ̸= j.

(ii) Pi, Qi commute with all stabilizers, but cannot be represented as simply a product of stabilizers.

Here, {Pi, Qi} are called the logical operators or logical errors which we briefly touched upon in the
context of CSS codes.

Having identified the logical operators, quantum gates can be defined correspondingly. For example,
Hadamard gate on the i-th qubit maps Pi to Qi and vice versa.

22.4 Local Indistinguishability

Last, we give a property which is the central tool for circuit lower bounds in quantum complexity.

Theorem 22.4.1 (Local indistinguishability). For a code ΠC′ and two codewords |ϕ⟩ , |ψ⟩ ∈ ΠC′,
suppose S is a set of qubits which do not contain any undetectable error, that is, any error on the
qubits in S could be detected, where the number of qubits in S is smaller than the distance of ΠC′.
Then tracing out everything except S, we have

Tr[n]\S(|ϕ⟩) = Tr[n]\S(|ψ⟩).

Proof. A one-line explanation is from no-cloning theorem: if qubits in S are erased, then information
about the encoded state can be recovered from the remaining qubits. But then S has no information
about the encoded state, as required by no-cloning theorem.
More formally, we need to show that ⟨ϕ|RS |ϕ⟩ = ⟨ψ|RS |ψ⟩ for any Pauli RS acting on S. We
discuss two different cases of RS .

1. RS commutes with all stabilizers. Since the size of S is smaller than the distance of the code,
RS is generated from the stabilizers (product of stabilizers). Otherwise RS will be a logical
operator, which is a contradiction. As |ϕ⟩ and |ψ⟩ are stabilized codewords, we have

RS |ϕ⟩ = |ϕ⟩ ⇒ ⟨ϕ|RS |ϕ⟩ = ⟨ϕ|ϕ⟩ = 1 = ⟨ψ|RS |ψ⟩ .

2. RS anti-commutes with at least one of the stabilizers, e.g., Za. Then we have

⟨ϕ|RS |ϕ⟩ = ⟨ϕ|RSZa |ϕ⟩ = −⟨ϕ|ZaRS |ϕ⟩ = −⟨ϕ|RS |ϕ⟩ ⇒ ⟨ϕ|RS |ϕ⟩ = 0 = ⟨ψ|RS |ψ⟩ .

113

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 23

April 20, 2022 Scribes: Ratip Emin Berker

Roadmap

Today we will be focusing on:

• Quantum PCP conjecture (QPCP)

– Recap of Local Hamiltonian Problem (LHP)

• Description complexity

– Approaches for relating it to QPCP

We will also talking about Local Indisguishablility and Clifford Circutis.

23.1 Local Hamiltonian Problem

Recall that in the Local Hamiltonian Problem (LHP [b−a,m]), we have a Prover and a Verifier.
We are also given n qubits and a k-local hamiltonian H on these qubits with k = O(1) and
H =

∑m
α=1 bαPα where m ≤ nk for some k, bα ∈ (−1, 1) and Pα are Pauli operators for all α. The

goal is to decide if E1(H) < a or E1(H) ≥ b where E1(H) is the ground state energy (smallest
eigenvalue) of H and it is guaranteed that one of these cases is true. A protocol is as follows: The
Prover send the Verifier the ground state |ψ⟩. The Verifier measures the energy ⟨ψ|H |ψ⟩ up to

± b−a
100 precision. Recall that Kitaev showed in 1999 that LHP [O(1)

m3 ,m] is QMA complete.

23.2 Quantum PCP Conjecture

Quantum PCP Conjecture: There exists a constant ϵ > 0 such that LHP [ϵm,m] is QMA
complete.

The main difference of the conjecture from the proof by Kitaev (LHP [1
m3 ,m]) is that now we

are allowed to measure the energy up to a much larger asymtotatic value, O(m) instead of O(1/m3),
even though ϵ is small (e.g. 10−35). Note that in order for the conjecture to be true, we would need
two parts:

• LHP [ϵm,m] is in QMA (Easy to show).

• LHP [ϵm,m] is in QMA-hard (Hard, open problem).

What we do know about the hardness is:

114

Theorem 23.2.1. LHP [ϵm,m] is NP-hard.

Unlike the QPCP, this is indeed proven, but it is still a highly nontrivial theorem. It’s proof
follows from the classical PCP Theorem, which is from 1992.

How do we approach the open problem of showing that LHP [ϵm,m] is QMA-hard? One method
is “Gap amplification”, which involves starting with any constant-local Hamiltonian H (with m
terms, i.e. H =

∑m
α=1 bαPα) and mapping/reducing it to some other Hamiltonian H ′ (with m′

terms, i.e. H ′ =
∑m′

α=1 bβPβ) through some efficent transformation such that we have one of these
two cases:

• Case 1: E0(H) ≈ 0⇒ E0(H
′) ≈ 0

• Case 2: E0(H) ≥ 1
m3 ⇒ E0(H

′) ≥ ϵ ·m′

Notice that if this reduction could indeed be done efficiently, then the QMA-hardness would be
shown, as we would solve LHP [1

m3 ,m] (which is proven to be QMA-hard) on H by tranforming
it to H ′ and solving LHP [ϵm′,m′] on H ′, implying that the latter must be QMA-hard. The
main difficulty in this reduction is to identify a small amount of energy present in the system
(E0(H) ≥ 1

m3) and then amplify it to a much larger energy (E0(H
′) ≥ ϵm′).

As mentioned above, Quantum PCP conjecture is a Quantum analog of the classical PCP
theorem, which shows that any NP protocol to prove x ∈ L can be reduced to a 3SAT instance
such that if the proof is accepted, then the 3SAT is satisfiable, and if the proof is rejected, then
≥ 1

8 + ϵ fraction of the clauses are unsatisfiable. This is a powerful transformation that, on an
intuitive level, enables us to accept/reject a proof by checking the satisfiability at a few places,
rather than checking all of them.

As discussed, showing that LHP [ϵm,m] is QMA-Hard is difficult. As a warm up, we will be
exploring the question of ruling out all ways which would put LHP [ϵm,m] in NP. In other words,
we are trying to prove that any person who claims that “the witness for this problem is easy (i.e.
a simple NP proof rather than a ground state) ” is wrong. In order to this, we will have to discuss
the notion of Description Complexity.

23.3 Description Complexity

As a warm up, consider the following questions:
Q1: You are given |ψ1⟩⟨ψ1| as a quantum state on n-qubits. How many complex numbers do you
need in order to describe it?
Answer: You need 2n − 1. But perhaps in some special quantum states, we need less (see next
question).
Q2: Say instead that our state is the tensor product n of single qubit states: |ψ2⟩⟨ψ2| = |ϕ1⟩⟨ϕ1| ⊗
|ϕ2⟩⟨ϕ2| ⊗ ... ⊗ |ϕn⟩⟨ϕn| where each |ϕi⟩ lives in C2. How many complex numbers would you need
to describe this state?
Answer: In order to describe this state, you need just 2n complex numbers, 2 amplitudes per each
|ϕi⟩⟨ϕi|.
|ψ1⟩⟨ψ1| and |ψ2⟩⟨ψ2| are both quantum states on n qubits, but |ψ2⟩⟨ψ2| is much easier to describe.

This is what description complexity is about (i.e. how easy it is to describe a quantum state). We
present various notions to approach Description Complexity:

115

Notion 1: Circuit complexity. Consider a state |ψ⟩ that is a result of applying a quantum
circuit with depth t to n qubits initially set to |0⟩⊗n Note that the number of complex numbers we

need to describe |ψ⟩ (i.e. the description complexity of |ψ⟩) is nt×O(1) where O(1) comes from

the number of complex numbers required to specify a unitary gate acting on two qubits (2 times
2 matrix), which is a simpler way to describe the state rather than describing the whole n qubit
unitary. Note that |ψ2⟩ described in Q2 above is a special case of this, as it can be obtained by
starting from |0⟩⊗n and applying a single rotation (hence t = 1). Most quantum states, however,
require t to be much larger, as it can be seen form the fact that 2n−1 should be of same complexity
as ntO(1) in the worst case.

Notion 2: Stabilizer Rank. This is a slightly less natural notion than Circuit complexity.
Recall that Clifford circuits are made of H (Hadamard), CNOT, and Phase gates, and they are
circuits that take Paulis to Paulis. For instance:

HXH† = Z (23.1)

HZH† = X (23.2)

CNOT (X ⊗ I)CNOT = X ⊗X (23.3)

The whole study of Paulis are simply linear algebra, which implies that the study of Clifford circuits
is also about linear algebra and is efficient. Esspecially:

Theorem 23.3.1 (Gottesman-Knill Theorem). All Clifford circuits are classically simulatable.

In other words, if you apply a Clifford circuit to a |0⟩⊗n state, you can compute the outcome
probabilities with a classical computer. On the other hand, Shor’s Algorithm, most likely, is not
classically simulatable (and hence cannot be done with a Clifford circuit, as far as we know) as
factoring a large number N cannot be efficiently done by a classical computer, as far as we know.

Say we apply a Clifford circuit to |0⟩⊗n qubits, and we get |θ⟩, which we call a stabilizer state,
which is easy to represent, with 2n2 real numbers. In order to this , consider ClZ1Cl

†, ClZ2Cl
†,. . .,

ClZnCl
† which are all Pauli operators and stabilize the state that we are interested in (since |0⟩⊗n

is stabilized by each Zi). In fact, a linear combination of such stabilizer states is also easy to study.
The stabilizer rank of a state |ψ⟩ is the minimum number R such that we can write |ψ⟩ as a linear
combination of R stabilizer state |ψ⟩ =

∑R
α=1 µ[α] |θα⟩ where each |θα⟩ = Clα |0⟩⊗n is a stabilizer

state (a Clifford circuit Clα applied to the zero state). Note that each of these stabilizer states be
described using 2n2 classical bits 1 so the overall state |ψ⟩ needs 2n2R classical bits to describe.
Most quantum states will have R to be very large, the same way that ciruit complexity for most
quantum states is high.

23.4 Connecting Description Complexity to QPCP

We now discuss how the notions of Description Complexity discussed above ties back into our
attempts at ruling out ways of “disproving” the QPCP. Here is a theorem that provides one potential
way of disproving QPCP:

1To see why this is the case, notice that each Clα |0⟩, is stabilized by the corresponding operators
ClαZ1Cl

†
α, ClαZ2Cl

†
α, . . . , ClαZnCl

†
α. Each ClαZiCl

†
α is a Pauli operator, so can be described using two n-bit num-

bers aα and bα (as we can write the Pauli operator as XaαZbα . Hence, Clα |0⟩ can be described using 2n2 classical
bits (2n per Pauli operator).

116

Theorem 23.4.1. Fix any ϵ > 0 and take any H =
∑

α bαPα. Assume that for all such H (i.e. for
all local Hamiltonians), ∃ |ψ⟩ with description complexity D(ϵ) (low description complexity) such
that ⟨ψ|H |ψ⟩ ≤ E0 +

ϵm
2 . In other words, for each local Hamiltonian, there is a low-energy state

|ψ⟩ that both achieves an energy as low as ϵm
2 above the ground energy and is also easy to describe.

Then LHP [ϵm,m] is NP (and hence QPCP is false).

Proof. Assume that that the conditions given in the theorem is true. In that case, the prover
can just sent the description of |ψ⟩ rather than the quantum state itself. For instance, the prover
could be sending the list of all the gates that generated |ψ⟩, or the list of the coeffiecents µα
for the corresponding stabilizer states |θα⟩. The verifier can then efficently compute ⟨ψ|H |ψ⟩ =∑

α bα ⟨ψ|Pα |ψ⟩. If the energy it compuets is less than ϵm
2 then the verifier accepts (as the Hamil-

tonian must have ground state energy E0 ≈ 0 for this to be true), if it is more than ϵm, then the
verifier rejects. Thus, LHP [ϵm,m] is NP.

One key assumption we made in the proof of the above theorem is that the verifier can then
efficently (i.e. in polynomial time) compute ⟨ψ|H |ψ⟩ =

∑
α bα ⟨ψ|Pα |ψ⟩ from the description of

|ψ⟩, which is not immediately obvious and needs further justification. This comes in the form of
the following theorem:

Theorem 23.4.2. There exists a classical algorithm that outputs ⟨ψ|Pα |ψ⟩ in 22
t
time. As a result,

⟨ψ|H |ψ⟩ =
∑

α bα ⟨ψ|Pα |ψ⟩ can be computed in m22
t
time (where m is the number of terms in the

sum), implying that if t is a constant, then this is an efficent algorithm.

Proof. Lets consider the example of circuit depth complexity (the case of stabilizer states is also
easy to prove, but we will not show it here). The proof is based on the idea of constructing what
is called a “light cone”. Fix a α and consider ⟨ψ|Pα |ψ⟩. Recall that we have ψ = U |0⟩⊗n where U
is a depth t quantum circuit. Hence, ⟨ψ|Pα |ψ⟩ = ⟨ψ|⊗n U †Pα |0⟩⊗n. This setup is depicted in the
figure below:

Since the Hamiltonian is k-local, then Pα has at most k non-identity Pauli matirces, and thus
only prevent a certain number of components Ui within the final layer of U from meeting their
conjugate U †

i (in this example, it prevents U †
2 and U2 to meet, but does not prevent U †

1 and U1 to
meet, so these matrices cancel by producing identity as their product (hence we can erase them
from the cricuit). Simlarly all the components of the final layer of U that were obstructed by Pα
from meeting their conjugate and hence becoming identity (in this example, U2 and U †

2 as well as

117

U3 and U †
3) will in turn obstruct a constant number of components in the second to last layer from

meeting their conjugate and hence becoming identity, and so on. This local obstruction effect leads
to a “light cone” as depicted in the figure above, where all the gates outside light cone meet with
their conjugates as cancel out to identity, whereas all the gates that are within light cone may not,
as they are obstructed by another gate in front of them. So if ψα is a k − local term, it obstructs
a constant number of gates, and so does the gates obstructed by it, and so on. Thus, as the light
cone spreads out, roughly 2O(t) qubits get obstructed, and all the remaining qubits can simply
get together with their conjugates and produce 1 as their inner product. Hence, ⟨ψ|Pα |ψ⟩ is a

computation on 2O(t) qubits, for which you need 22
O(t) time to compute, which is constant if t is a

constant. Hence, you need O(n ·22O(t)) to compute the overall energy ⟨ψ|H |ψ⟩ =
∑

α bα ⟨ψ|Pα |ψ⟩,
which is indeed efficent.

The above two theorems imply that if QPCP is indeed true, then we should not be able to
find, for each local Hamiltonian H, a state |ψ⟩ with both low description complexity description
complexity (D(ϵ)) and low energy (⟨ψ|H |ψ⟩ ≤ E0 +

ϵm
2).

118

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 24 (Guest Lecture by Dr. Sona Najafi)

April 22, 2022 Scribe: Elbert Du

24.1 Qisket Basics

Qisket is a python library that allows you to simulate quantum computation and access IBM’s
quantum computers. We can prepare states and apply unitary gates with the package. The qisket
package also allows you to draw the circuit (visualization).

24.1.1 Qisket Transpiler

The transpiler converts the input circuit in your code to a physical circuit that can be run on the
IBM hardware as follows:

24.1.2 Qisket Tutorials

Preparing the Bell and GHZ states

Recall that to prepare these basic states (and the corresponding state in n qubits), we start by ini-
tializing our qubits to the |0⟩ state. Then, we apply the Hadamard to the first qubit and iteratively
take the cnot with each other qubit. For example, the GHZ state (3 qubits) is prepared as in the
following diagram:

119

For the full tutorials, see Jupyter notebooks in this Ed post: https://edstem.org/us/courses/
19209/discussion/1427518

Current problems with quantum computing in practice: the hardware is currently extremely
noisy. Current research on fixing this with error correcting codes and at the hardware level. We
can use IBM’s hardware by making an account here: https://quantum-computing.ibm.com

Things to note:

1. When running the “Hello ibmq.ipynb” put ‘ibm-q’ in the hub and ‘open’ in the group to make
it work without a paid subscription.

2. It’s currently difficult to distinguish between queue time and runtime. It would be good to
implement a way to do this in the future.

24.2 Hybrid Classical-Quantum Algorithms

24.2.1 Adiabatic Simulation

Given a hamiltonian H, we can break it into H = sH0 + (1 − s)H1 where H0 (the ground state)
is easy to prepare. The idea is that if we start from the ground state H0, we can gradually vary it
until we get the desired H. This is basically what we’re doing:

24.2.2 Variational Circuits

Variational Circuits are hybrid algorithms used to solve hard problems
General architecture:

1. Prepare an initial state

2. evaluate a quantum circuit with some parameters (free variables) θ

3. Measure the output and feed this into a classical optimization algorithm to optimize the
parameters for the quantum circuit.

4. Feed the parameters to the quantum circuit.

5. Repeat until done

Many problems can be encoded as NP-complete optimization problems like Max Cut.

Example 24.2.1. QAOA Variational Form for solving Max Cut:

1. Prepare |+⟩n

2. Apply the mixing unitary U(HM) = e−iβHM whereHM is the mixing hamiltonian
∑

i∈[n]
⊗
I⊗

Xi.

3. Apply problem unitary U(Hp) = e−iγHp where Hp is the problem hamiltonian
∑

(i,j)∈E
⊗
I⊗

Zi ⊗ Zj .

4. Measure, evaluate mean of cuts (running the above quantum circuit many times)

120

https://edstem.org/us/courses/19209/discussion/1427518
https://edstem.org/us/courses/19209/discussion/1427518
https://quantum-computing.ibm.com

5. Optimize and update parameters (γ, β) for mixer hamiltonian and cost function respectively.

6. Repeat p times for some p.

If we repeat this iteratively, it should converge to the optimal solution. Even at a single iteration,
if we have sufficiently many copies of the quantum circuit described in steps 1,2,3, this will give us
the best cuts with high frequency for simple graphs.

121

CS 231 Quantum Computation and Quantum Complexity Instructor: Anurag Anshu

Lecture 25

April 27, 2022 Scribe: Jothi Ramaswamy

25.1 Quantum Error Correcting and Toric Codes

25.1.1 Main Takeaways from this class

If there is anything to takeaway from this class, it is the following two notions that have described
many of the theorems and algorithms we have worked with this semester.

1. ”Discreteness in continuous” - quantum states can be very complex, but we could always hold
onto something discrete.

(a) Jordan’s Lemma is an example of this, which we have used in many of the quantum
algorithms we have discussed so far, and have used briefly to discuss non-local games

(b) We also recently discussed how much of quantum error correction condenses down to
linear algebra in Fn2

2. ”Static ideas in dynamics”

(a) An example of this is hamiltonian simulation and quantum walks, boiled down to some
simple quantum walk operator w.

(b) We also discussed the Quantum Cook Levin Theorem as a general method to map
computation to a hamiltonian.

25.1.2 Agenda

1. Recap of lectures 22 and 23

2. Search for hamiltonians with ”hard” ground states.

3. Bill’s discussion on Matrix Product States (MPS)

4. Toric Code

25.1.3 Recap: Description Complexity

During lectures 22 and 23, we discussed the notion of the description complexity of some |ψ⟩. The
description complexity is the number of bits needed to describe |ψ⟩.

One way to measure this is to look at the quantum circuit complexity of |ψ⟩, or CC(|ψ⟩).
Quantum circuit complexity is the depth of the circuit you need to prepare this state from all
zeros. If we say that |ψ⟩ = U |0⟩⊗n, the quantum circuit complexity is how many gates went into
U.

122

Another notion of description complexity is the stabilizer rank. The stabilizer rank is a way to
write a quantum state |ψ⟩ as a sum over stabilizer states which can be generated by some Clifford
circuits. In other terms, |ψ⟩ =

∑R
α=1 µαCLα |0⟩

⊗n. We generally want the rank to be low, so the
smaller R is, the better.

The third notion is tensor network representation. They are usually helpful in what is known
as a “spin chain,” and this concept can also be seen as a matrix product state, which Bill discusses
later in this lecture.

25.1.4 Recap on undetectable errors

One of the things that we learned from HW 10 was the concept that if we have some |ψ⟩ , |ϕ⟩, which
are k-local indistinguishable (LI), then CC(|ψ⟩) ≥ log k and CC(|ϕ⟩) ≥ log k

In lecture 22, we also discussed quantum codes (QECC). We would have stabilizers
Za1 , Za2 , · · ·Zan−kXb1 , Xb2 , · · ·Xbl where ai ∈ H1 and bi ∈ H2. The codestates are the set of {|ψ⟩}
such that Zai |ψ⟩ = |ψ⟩ and Xbi |ψ⟩ = |ψ⟩. We also want Zai and Xbi to commute. We know that
ZaiXbi = (−1)ai.biXbiZai . This means that we want ai.bi = 0 for all possible i, so H1 and H2 must
be orthogonal.

What about undetectable errors? Let’s say we have some Xe, Zf that commute with all
the stabilizers. So why are they undetectable? We have ZaiXe = XeZai , which ensures that
ZaiXe |ψ⟩ = Xe |ψ⟩. Thus, Xe |ψ⟩ satisfies the definition of a codestate. As a result, these errors
are undetectable. The size of these errors, or logicals, is also known as the distance.

One of the other theorems we previously discusses is d− 1 local indistinguishability (LI). This
is the idea that any two codestates |ψ⟩ , |ϕ⟩ are d− 1 LI. This idea ties into the no-cloning theorem
because you can’t clone quantum information. Both |ψ⟩ , |ϕ⟩ encode quantum information, so if
any of the d-1 qubits are lost, your code is able to correct those errors and the information is still
there.

Now we can combine the ideas in this section to come up with the following theorem:

Theorem 25.1.1. If a quantum error correcting code encodes at least one qubit (so there are at
least 2 codestates), then any codestate |ψ⟩ has a CC(|ψ⟩) ≥ log(d− 1).

This means that quantum error correcting codes have a very high complexity! It requires a
circuit of large depth to prepare the codewords.

25.1.5 Hard Hamiltonians

Let’s consider the following:

Hcode =
∑
i

(I − Zai) +
∑
i

(I −Xai)

What is the ground space? The ground space in this case is just the codespace. This is because
both matrix terms in this summation are nonnegative, and the eigenvalues of these matrices are
also at least 0. The eigenvalues are exactly 0 where the codestate conditions are satisfied, so the
ground space is just the codespace.

Physicists like when these Hamiltonians are local, where the a′is have a low hamming weight
(e.g. ai = 01000 · · · . Computer scientists like having a low hamming weight as well since this
makes it easier to check if you are in the codespace. We can thus define:

123

Quantum LDPC (lower density parity check code): Codes in which stabilizers are local.
It is also desirable to have large distance, such as d ∼ poly(n).

We might also be concerned about other aspects other than local stabilizers, etc, like geometry.
For example, we can also say that H =

∑
i Pi,i+1. These are often not the best examples of hard

hamiltonians. In some cases, we may end up with a gapped hamiltonian, where the ground state
is an MPS with low entanglement.

25.1.6 Matrix Product States

Anurag’s main takeaway: Matrix Product States are states with low entanglement

Bill’s starting example takeaways: We have two registers A and B, where A has one qubit and
B has 2 qubits. This means that some state |ψ⟩ is an 8 dimensional vector. If we reshape this
vector into a matrix, let’s say a 2x4 matrix (which ends up being equivalent to |ψ⟩A ⟨ψ|B, both the
vector and the matrix we created have the same resulting SVD and Schmidt decomposition. This
decomposition ends up being something of the form

∑r
i=1 λiuiv

†
i . The rank is represented by r,

and iff we have that r=1, then A and B are separable (the lower the rank, the more separable they
are).

This is the most simple case. Now, if we have many qubits, how do we find the separability?
Let’s write our new

|ψ⟩AB =
∑

j1,j2,···jn

Cj1,j2,···jn |j1, j2, · · · jn⟩

. This is a vector of size 2n. If we separate out j1, we get∑
j1,<j2,···jn>

Cj1,<j2,···jn> |j1⟩ |j2, · · · jn⟩

This ends up being a matrix of size 2x2n−1. So we can separate states and end up with re-
shaped matrices, but we don’t end up losing or gaining information. If we write out the SVD and
look at specific elements, we observe that the maximum rank that we can achieve is 2, depending
on the entanglement of the states. We can do this with each vector to unwrap the entanglement
relationship between each pair.

[Bill’s Notes:] Then continuing from the above separation result, where C = {Cj1,<j2,···jn>} is a
size 2×2n−1 matrix, if we do a SVD on it, we get C = USV †, which in element-wise form, becomes:

Cj1,<j2,···jn> =
∑
a1

Uj1,aSa1,a1V
†
a1,<j2,···jn>, (25.1)

where index a1 goes from 1 to the rank (at most two) of the matrix C = {Cj1,<j2,···jn>} (you can
already see that if C is rank 1, meaning that qubit 1 is separable/unentangled from qubits 2 to
n, we are thus saving the “storage space”–the number of parameters need–by having a single term
a1 = 1 rather than summing over a1 = 1, 2).

124

We substitute the expression for Cj1,<j2,···jn> into the big sum:

|Ψ⟩ =
∑
j1...jN

∑
a1

Uj1,a1Sa1,a1V
†
a1,⟨j2...jN ⟩︸ ︷︷ ︸

Cj1,<j2,···jn>

|j1⟩ |j2 . . . jN ⟩

=
∑
j1...jN

∑
a1

Uj1,a1C
(a1)
⟨j2...jN ⟩ |j1⟩ |j2 . . . jN ⟩

(25.2)

where we absorb the scalar Sa,a into the matrix {V †
a1,<j2,···jn>} and write the scalars product

Sa1,a1V
†
a1,<j2,···jn> as C

(a1)
⟨j2...jN ⟩. Do you notice the pattern? We now have exactly another

{C(a1)
⟨j2...jN ⟩} to decompose on, given a rank index a1.

Now, try to make sense of this to yourself (we keep decomposing by SVD, first two lines
replicated from above):

|Ψ⟩ =
∑
j1...jN

∑
a1

Uj1,a1Sa1,a1V
†
a1,⟨j2...jN ⟩︸ ︷︷ ︸

Cj1,<j2,···jn>

|j1⟩ |j2 . . . jN ⟩

=
∑
j1...jN

∑
a1

Uj1,a1C
(a1)
⟨j2...jN ⟩ |j1⟩ |j2 . . . jN ⟩

=
∑
j1...jN

∑
a1

Uj1,a1
∑
a2

U
(a1)
j2,a2

S(a1)
a2,a2V

(a1)
a2,⟨j2...jN ⟩

† |j1⟩ |j2⟩ |j3 . . . jN ⟩

=
∑
j1...jN

∑
a1

U
(a1)
j1

∑
a2

U
(a1,a2)
j2

C
(a1,a2)
⟨j2...jN ⟩ |j1⟩ |j2⟩ |j3 . . . jN ⟩

=
∑
j1...jN

∑
a1

U
(a1)
j1

∑
a2

U
(a1,a2)
j2

∑
a3

U
(a1,a2,a3)
j3

C
(a1,a2,a3)
⟨j3...jN ⟩ |j1⟩ |j2⟩ |j3 . . . jN ⟩

. . .

=
∑
j1...jN

∑
a1

U
(a1)
j1

∑
a2

U
(a1,a2)
j2

∑
a3

U
(a1,a2,a3)
j3

· · ·
∑
aN−1

U
(a1,a2,a3,...,aN−1)
jN−1

C
(a1,a2,a3,...,aN−1)
jN

|j1⟩ |j2⟩ . . . |jN−1⟩ |jN ⟩

=
∑
j1...jN

∑
a1a2...aN−1

U
(a1)
j1

U
(a1,a2)
j2

U
(a1,a2,a3)
j3

. . . U
(a1,a2,a3,...,aN−1)
jN−1

U
(a1,a2,a3,...,aN−1)
jN

|j1⟩ |j2⟩ . . . |jN−1⟩ |jN ⟩ ,

(25.3)

where in the last step, we write C
(a1,a2,a3,...,aN−1)
jN

as U
(a1,a2,a3,...,aN−1)
jN

for notational consistency.

This might not be what you would see in textbooks (for some reason many of the online sources
are very lazy on the derivations). I hope I made the following clear: from the last step of the
derivation, we can equivalently redefine the indexing by the following:

1. let (a1, a2) be the new “α2” index

2. let (a1, a2, a3) be the new “α3” index

3. . . .

125

4. let (a1, a2, a3, . . . , aN−1) be the new “aN−1” index.

Note, now α1 . . . αN−1 indices are no longer independent indices! αk depends on the choice of αk−1.
Then we have:

|Ψ⟩ =
∑
j1...jN

∑
a1a2...aN−1

U
(a1)
j1

U
(a1,a2)
j2

U
(a1,a2,a3)
j3

. . . U
(a1,a2,a3,...,aN−1)
jN−1

U
(a1,a2,a3,...,aN−1)
jN

|j1⟩ |j2⟩ . . . |jN−1⟩ |jN ⟩

=
∑
j1...jN

∑
a1a2...aN−1

U
(α1)
j1

U
(α2)
j2

U
(α3)
j3

. . . U
(αN−1)
jN−1

U
(αN−1)
jN

|j1⟩ |j2⟩ . . . |jN−1⟩ |jN ⟩ .

(25.4)

Exactly as what I said before, αk depends on the choice of αk−1, so in the summation, we are still
effectively summing over a1a2 . . . aN−1 in stead of α1α2 . . . αN−1 (this might sound a bit confusing).
How do we break this dependency? We add in the so-called pair-wise interaction!

|Ψ⟩ =
∑
j1...jN

∑
α1α2...αN−1

U
(α1)
j1

U
(α1,α2)
j2

U
(α2,α3)
j3

. . . U
(αN−2,αN−1)
jN−1

U
(αN−1)
jN

|j1⟩ |j2⟩ . . . |jN−1⟩ |jN ⟩

=
∑
j1...jN

∑
a1a2...aN−1

U
(a1)
j1

U

(a1,a1, a2︸ ︷︷ ︸
α2

)

j2
U

(a1, a2︸ ︷︷ ︸
α2

,a1, a2, a3︸ ︷︷ ︸
α3

)

j3
. . . U

(αN−2,αN−1)
jN−1

U
(αN−1)
jN

|j1⟩ |j2⟩ . . . |jN−1⟩ |jN ⟩ .

(25.5)

Do you see what is happening here!? By adding some redundant indices, we are breaking the long
dependency chain a1, (a1, a2), (a1, a2, a3), . . . , (a1, a2, . . . , aN−1) into a nearest-neighbor dependency
chain a1︸︷︷︸

α1

, (a1︸︷︷︸
α1

, a1, a2︸ ︷︷ ︸
α2

), (a1, a2︸ ︷︷ ︸
α2

, a1, a2, a3︸ ︷︷ ︸
α3

), . . . , (a1, a2, . . . , aN−2︸ ︷︷ ︸
αN−2

, a1, a2, . . . , aN−2, aN−1︸ ︷︷ ︸
αN−1

), at the cost

of having very sparse matrices.

Why sparse? Note that within each U matrix, for example, U
(a1,a1,a2)
j2

= U
(a1,α2)
j2

, we must
require that the two a1’s must agree, otherwise we set the element to zero:

U

(a′1, a1︸ ︷︷ ︸
these have to agree

,a2)

j2
= 0 if a′1 ̸= a1 (25.6)

We end up observing that the amplitudes C can be estimated using a product of matrices. This
idea of using the product of matrices to determine the amplitude of basis vectors is what comprises
Matrix Product States. The more entangled a state is, the larger these states are and the harder
they are to store. As a result, we prefer these states to have low entanglement.

25.1.7 Back to code Hamiltonians

Let’s go back to our definition of Hcode.

H =
∑
i

(I − Zai) +
∑
i

(I −Xai)

a1, a2, · · · an−k are the rows of H1 and b1, b2, · · · bl are the rows of H2. These are all rows of low
hamming weight. So what can be an example of a code? We looked at repetition codes previously,

126

which looked like

H1 =

1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1

With this definition of H1, our code words are(

1 1 1 1 1 1
0 0 0 0 0 0

)
What about H2? Can that just be another repetition code? We do have one constraint that

ai.bi = 0 because Xai and Zbi have to commute. This means that H1 and H2 must be orthogonal.
Which b is orthogonal to all the codes in H1? b =

(
1 1 1 1 1 1

)
. This is also a codeword

of H1. This means that b has to be a code word of H1 in order for it to hold that ai.bi = 0. If
H1 is a good error correcting code, its code words will be very big with a large hamming weight,
which means we will have small ai’s and large bi’s, which seems contradictory. This means that
the construcion of a good quantum error correcting code is magic.

25.1.8 Toric Code

When we were discussing repetition code previously, we were discussing stabilizers that looked like
the following

Z1 ⊗ Z2, Z2 ⊗ Z3, Z3 ⊗ Z4

While this was a good classical code, it wasn’t able to detect all quantum errors, so we had to
introduce

X1 ⊗X2 ⊗X3 · · ·Xb

The Z’s were able to detect the X errors, but we needed a very long X to detect all the Z errors.
So how do you find a local hamiltonian where both ai and bi have a low hamming weight? The

answer to this comes from Toric Code. Toric Code combines these classical codes while avoiding a
high weight bi.

How it works: Think of a torus, and place qubits on all the edges, so it would look like the
following:

127

Now let’s define two checks. X-checks will be checks sitting on the vertices and Z-checks will
be checks sitting on the faces. This looks like the following

This ends up making a 4-local hamiltonian because each matrix term in H has a rank 4. X and
Z also all commute.

How does this detect errors? If we have an X error that looks like the following

The error will anticommute with the Z’s on the adjacent face so you can still easily detect it.
How about an error like the following?

While these errors commute still, we aren’t as concerned because this actually still a stabilizer.
However, we would be concerned about the error below

128

We can group some groups of 2 together to close loops on the torus, but the rest cannot be closed
and will be undetectable. Overall, the toric code distance is log(

√
n), so the circuit complexity lower

bound is around log(
√
n).

129

Bibliography

[AHL+14] Dorit Aharonov, Aram W. Harrow, Zeph Landau, Daniel Nagaj, Mario Szegedy, and
Umesh Vazirani. Local tests of global entanglement and a counterexample to the gen-
eralized area law. In 2014 IEEE 55th Annual Symposium on Foundations of Computer
Science, pages 246–255, 2014.

[AN02] Dorit Aharonov and Tomer Naveh. Quantum np-a survey. arXiv preprint quant-
ph/0210077, 2002.

[BB84] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key distri-
bution and coin tossing. International Conference on Computers, Systems, and Signal
Processing, 1:175–179, 1984.

[BBC+01] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf.
Quantum lower bounds by polynomials. J. ACM, 48(4):778–797, jul 2001.

[BG20] Anne Broadbent and Alex B. Grilo. Qma-hardness of consistency of local density matri-
ces with applications to quantum zero-knowledge. In 2020 IEEE 61st Annual Symposium
on Foundations of Computer Science (FOCS), pages 196–205, 2020.

[Eke91] Artur K. Ekert. Quantum cryptography based on bell’s theorem. Phys. Rev. Lett.,
67:661–663, Aug 1991.

[GH10] Daniel Gottesman and M B Hastings. Entanglement versus gap for one-dimensional
spin systems. New Journal of Physics, 12(2):025002, feb 2010.

[Ira10] Sandy Irani. Ground state entanglement in one-dimensional translationally invariant
quantum systems. Journal of Mathematical Physics, 51(2):022101, 2010.

[LYC16] Guang Hao Low, Theodore J. Yoder, and Isaac L. Chuang. Methodology of Resonant
Equiangular Composite Quantum Gates. Physical Review X, 6(4):041067, December
2016.

[Mah18] Urmila Mahadev. Classical verification of quantum computations. In 2018 IEEE 59th
Annual Symposium on Foundations of Computer Science (FOCS), pages 259–267. IEEE,
2018.

[SV14] Sushant Sachdeva and Nisheeth K. Vishnoi. Faster Algorithms via Approximation The-
ory. Foundations and Trends® in Theoretical Computer Science, 9(2):125–210, 2014.

130

[Wat06] John Watrous. Zero-knowledge against quantum attacks. In Proceedings of the Thirty-
Eighth Annual ACM Symposium on Theory of Computing, STOC ’06, page 296–305,
New York, NY, USA, 2006. Association for Computing Machinery.

[YK17] Beni Yoshida and Alexei Kitaev. Efficient decoding for the hayden-preskill protocol,
2017.

131

	
	The Quantum Formalism
	Quantum Theory
	Multiple quantum systems
	Looking ahead

	
	Announcements
	Office hours
	Homework 1

	Roadmap
	Defining a qubit
	First candidate definition
	Second candidate definition
	Third candidate definition

	
	Quantum key Distirbution

	
	Recap
	Quantum Key Distribution
	CHSH Test

	
	Outline
	Models of Quantum Computation
	Quantum circuit model
	Performing a computation
	Interpreting the output

	What can we do with quantum computation?
	Search problem
	Oracle model
	Classical interlude
	Quantum version
	Grover's search algorithm

	Next Class

	
	Grover's Algorithm
	The Algorithm
	Analysis
	Optimality

	
	Quantum Fourier transform over {0,1}n
	Simon's Problem
	Forrelation

	
	Introduction to Phase Estimation
	Informal Definition
	An Example
	Importance
	Phase Estimation for Search

	
	Recap of Quantum Phase Estimation
	Quantum Fourier Transform
	Shor's algorithm
	Quantum Fourier Transform Revisited

	
	Motivation
	Random Walk over a Graph
	Quantum Walk

	
	Revisiting Quantum Walks
	Collision Problem
	Hamiltonian Complexity

	
	Classical Proof Systems and Quantum Proofs
	NP (Non-deterministic polynomial time)
	MA (Merlin-Arthur)
	QMA (Quantum Merlin-Arthur)

	Quantum Cook-Levin Theorem
	Feynman-Kitaev Clock Construction

	
	Clock Construction
	History states
	Clock Hamiltonian

	Applications
	Construction
	Hprop
	Hinit
	Hout

	Proof Sketch

	
	Final Analysis of Clock Construction
	Review
	Prove Completeness
	Prove Soundness

	Marriott Watrous Protocol
	Amplification of QMA

	Marriott-Watrous Protocol

	
	Lecture Plan
	Marriot-Watrous Protocol
	Overview
	The Verifier Circuit
	The Marriott-Watrous Theorem
	Specifying the Protocol
	Understanding the Protocol
	Conclusion

	Hamiltonian Simulation
	Overview
	Applications
	Goal
	Method 1: Trotter Method
	Method 2: Phase Estimation with Quantum Walks

	
	Today
	Recap

	Trotter method
	Quantum Walk
	Linear Systems
	Quantum Linear Systems (Harrow, Hassidim, and Lloyd)

	
	Recap: Hamiltonian Simulation, Quantum Linear Systems
	Hamiltonian Simulation
	Quantum Linear Systems

	Quantum Linear Systems
	QLS Solution Theorem
	Rewriting the QLS Problem
	Harrow-Hassidim-Lloyd Algorithm
	HHL Algorithm Analysis

	Quantum Walks
	Recap
	Remaining Proof in Quantum Walks

	
	Predicting Properties in a Quantum State
	How can we predict properties of rho efficiently?
	Naive Case
	Classical Case

	Shadow Tomography
	State Design

	
	Hamiltonian simulation using quantum walks
	Setup
	Recall: Quantum Walks
	Hamiltonian Simulation: High Level
	Hamiltonian Simulation: Details

	
	Preliminary: Chebyshev polynomials
	Hamiltonian simulation
	Finishing the proof for Hamiltonian simulation

	Quantum signal processing
	Applications of QSP
	Formal description of QSP

	
	Pauli Matrices Review
	Concurrent Measurement

	Error Correction Codes
	Quantum Error Correcting Codes
	The Quantum Rep Code

	
	Recap
	CSS Codes
	Logical Operators
	Local Indistinguishability

	
	Local Hamiltonian Problem
	Quantum PCP Conjecture
	Description Complexity
	Connecting Description Complexity to QPCP

	
	Qisket Basics
	Qisket Transpiler
	Qisket Tutorials

	Hybrid Classical-Quantum Algorithms
	Adiabatic Simulation
	Variational Circuits

	
	Quantum Error Correcting and Toric Codes
	Main Takeaways from this class
	Agenda
	Recap: Description Complexity
	Recap on undetectable errors
	Hard Hamiltonians
	Matrix Product States
	Back to code Hamiltonians
	Toric Code

